Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3345-3352.DOI: 10.11772/j.issn.1001-9081.2020121898
• Multimedia computing and computer simulation • Previous Articles Next Articles
Fuhai LI1, Murong JIANG1(), Lei YANG2, Junyi CHEN2
Received:
2020-12-04
Revised:
2021-05-13
Accepted:
2021-08-03
Online:
2021-05-13
Published:
2021-11-10
Contact:
Murong JIANG
About author:
LI Fuhai,born in 1994,M. S. candidate. His research interests
include deep learning,image reconstructionSupported by:
通讯作者:
蒋慕蓉
作者简介:
李福海(1994—),男,重庆人,硕士研究生,主要研究方向:深度学习、图像重建基金资助:
CLC Number:
Fuhai LI, Murong JIANG, Lei YANG, Junyi CHEN. Solar speckle image deblurring method with gradient guidance based on generative adversarial network[J]. Journal of Computer Applications, 2021, 41(11): 3345-3352.
李福海, 蒋慕蓉, 杨磊, 谌俊毅. 基于生成对抗网络的梯度引导太阳斑点图像去模糊方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3345-3352.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020121898
方法 | PSNR/dB | SSIM |
---|---|---|
SPSR | 22.965 5 | 0.638 3 |
DRN-L | 24.274 2 | 0.652 4 |
DeblurGANv2-Mobile | 24.476 4 | 0.652 6 |
DeblurGANv2-Inception | 24.064 0 | 0.674 1 |
Cycle-GAN1 | 25.123 7 | 0.744 2 |
Cycle-GAN2 | 23.620 1 | 0.694 7 |
本文方法 | 27.603 9 | 0.833 4 |
本文方法+预处理 | 27.801 0 | 0.851 0 |
Tab. 1 Evaluation results of different methods on test set
方法 | PSNR/dB | SSIM |
---|---|---|
SPSR | 22.965 5 | 0.638 3 |
DRN-L | 24.274 2 | 0.652 4 |
DeblurGANv2-Mobile | 24.476 4 | 0.652 6 |
DeblurGANv2-Inception | 24.064 0 | 0.674 1 |
Cycle-GAN1 | 25.123 7 | 0.744 2 |
Cycle-GAN2 | 23.620 1 | 0.694 7 |
本文方法 | 27.603 9 | 0.833 4 |
本文方法+预处理 | 27.801 0 | 0.851 0 |
方法 | SSIM | 模型尺寸/MB | 训练时间/h |
---|---|---|---|
无预处理 | 0.833 4 | 271.3 | 86.8 |
Mobile | 0.851 0 | 291.5 | 103.8 |
Inception | 0.853 2 | 510.7 | 143.2 |
Tab. 2 Performance comparison of different preprocessing methods
方法 | SSIM | 模型尺寸/MB | 训练时间/h |
---|---|---|---|
无预处理 | 0.833 4 | 271.3 | 86.8 |
Mobile | 0.851 0 | 291.5 | 103.8 |
Inception | 0.853 2 | 510.7 | 143.2 |
方法 | PSNR/dB | SSIM |
---|---|---|
FPN编码器分支 | 25.261 6 | 0.775 1 |
去掉分支 | 24.840 6 | 0.727 5 |
Tab. 3 Impact of different gradient branch structures
方法 | PSNR/dB | SSIM |
---|---|---|
FPN编码器分支 | 25.261 6 | 0.775 1 |
去掉分支 | 24.840 6 | 0.727 5 |
方法 | PSNR/dB | SSIM |
---|---|---|
DeblurGANv2-Mobile | 28.54 | 0.929 4 |
DeblurGANv2-Inception | 28.85 | 0.932 7 |
本文方法 | 28.69 | 0.931 2 |
本文方法+预处理 | 28.76 | 0.921 8 |
Tab. 4 Evaluation results of different methods on DVD dataset
方法 | PSNR/dB | SSIM |
---|---|---|
DeblurGANv2-Mobile | 28.54 | 0.929 4 |
DeblurGANv2-Inception | 28.85 | 0.932 7 |
本文方法 | 28.69 | 0.931 2 |
本文方法+预处理 | 28.76 | 0.921 8 |
方法 | PSNR/dB | SSIM |
---|---|---|
DL | 24.64 | 0.841 9 |
DeepDeblur | 29.08 | 0.913 5 |
SRN | 30.26 | 0.934 2 |
DeblurGANv2-Mobile | 28.17 | 0.925 4 |
DeblurGANv2-Inception | 29.55 | 0.934 4 |
本文方法 | 28.85 | 0.921 2 |
本文方法+预处理 | 28.92 | 0.923 2 |
Tab. 5 Evaluation results of different methods on GOPRO dataset
方法 | PSNR/dB | SSIM |
---|---|---|
DL | 24.64 | 0.841 9 |
DeepDeblur | 29.08 | 0.913 5 |
SRN | 30.26 | 0.934 2 |
DeblurGANv2-Mobile | 28.17 | 0.925 4 |
DeblurGANv2-Inception | 29.55 | 0.934 4 |
本文方法 | 28.85 | 0.921 2 |
本文方法+预处理 | 28.92 | 0.923 2 |
1 | 张兰强.太阳高分辨率力成像多层共轭自适应光学技术研究[D].北京:中国科学院大学,2014:20-28. |
ZHANG L Q. Research on multi-conjugate adaptive optics technology for solar high-resolution force imaging [D]. Beijing: University of Chinese Academy of Sciences, 2014: 20-28. | |
2 | 刘忠.天文图象高分辨重建及空域性质研究[D].北京:中国科学院大学,2003:25-39. |
LIU Z. Research on high-resolution image reconstruction and spatial characteristics of astronomical images [D]. Beijing: University of Chinese Academy of Sciences, 2003: 25-39. | |
3 | 邱耀辉,刘忠,卢汝为,等.天文图像空域重建新方法:迭代位移叠加法[J].光学学报,2001,21(2):186-191. 10.3321/j.issn:0253-2239.2001.02.015 |
QIU Y H, LIU Z, LU R W, et al. A new method for astronomical image reconstruction in spatial region: iterative shift-and-add technique [J]. Acta Optica Sinica, 2001, 21(2): 186-191. 10.3321/j.issn:0253-2239.2001.02.015 | |
4 | 向永源.太阳高分辨高速重建算法的研究[D].北京:中国科学院大学,2016:19-22. |
XIANG Y Y. Research on high speed high resolution solar reconstruction algorithm [D]. Beijing: University of Chinese Academy of Sciences, 2016: 19-22. | |
5 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
6 | MA C, RAO Y M, CHENG Y, et al. Structure-preserving super resolution with gradient guidance [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7766-7775. 10.1109/cvpr42600.2020.00779 |
7 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9906. Cham: Springer, 2016: 1604-1613. |
8 | GU J J, LU H N, ZUO W M, et al. Blind super-resolution with iterative kernel correction [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1604-1613. 10.1109/cvpr.2019.00170 |
9 | GUO Y, CHEN J, WANG J D, et al. Closed-loop matters: dual regression networks for single image super-resolution [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5406-5415. 10.1109/cvpr42600.2020.00545 |
10 | KAUFMAN A, FATTAL R. Deblurring using analysis synthesis networks pair [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5810-5819. 10.1109/cvpr42600.2020.00585 |
11 | YANG F Z, YANG H, FU J L, et al. Learning texture transformer network for image super-resolution [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5790-5799. 10.1109/cvpr42600.2020.00583 |
12 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
13 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [EB/OL]. (2016-01-07) [2020-08-27]. . |
14 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. 10.1109/iccv.2017.244 |
15 | ENGIN D, GENC A, EKENEL H K. Cycle-dehaze: enhanced CycleGAN for single image dehazing [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 938-946. 10.1109/cvprw.2018.00127 |
16 | KUPYN O, MARTYNIUK T, WU J R, et al. DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8877-8886. 10.1109/iccv.2019.00897 |
17 | JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN [EB/OL]. (2018-09-10) [2020-08-27]. . |
18 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5769-5779. |
19 | REN Y H, JIANG M R, FU Z X, et al. Reconstruction of single-frame solar speckle image with cycle consistency loss and perceptual loss [C]// Proceedings of the 2019 6th International Conference on Information Science and Control Engineering. Piscataway: IEEE, 2019: 439-443. 10.1109/icisce48695.2019.00094 |
20 | JIA P, HUANG Y, CAI B J, et al. Solar image restoration with the CycleGAN based on multi-fractal properties of texture features [J]. The Astrophysical Journal Letters, 2019, 881(2): Article No.L30. 10.3847/2041-8213/ab365f |
21 | WANG X T, YU K, WU S X, et al. ESRGAN: enhanced super resolution generative adversarial networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11133. Cham: Springer, 2018: 63-79. |
22 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10) [2020-08-27]. . 10.5244/c.28.6 |
23 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19 |
24 | SUN J, CAO W F, XU Z B, et al. Learning a convolutional neural network for non-uniform motion blur removal [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 769-777. 10.1109/cvpr.2015.7298677 |
25 | NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 257-265. 10.1109/cvpr.2017.35 |
26 | TAO X, GAO H Y, SHEN X Y, et al. Scale-recurrent network for deep image deblurring [C]// Proceedings of the 2018 IEEE/CVG Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8174-8182. 10.1109/cvpr.2018.00853 |
[1] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[2] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[3] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[4] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[5] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[6] | Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping [J]. Journal of Computer Applications, 2023, 43(7): 2065-2072. |
[7] | Xin JIN, Yangchuan LIU, Yechen ZHU, Zijian ZHANG, Xin GAO. Sinogram inpainting for sparse-view cone-beam computed tomography image reconstruction based on residual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2023, 43(6): 1950-1957. |
[8] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
[9] | Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer [J]. Journal of Computer Applications, 2023, 43(5): 1596-1605. |
[10] | Hao WANG, Zicheng WANG, Chao ZHANG, Yunsheng MA. Generative adversarial network based data uncertainty quantification method [J]. Journal of Computer Applications, 2023, 43(4): 1094-1101. |
[11] | Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(4): 1261-1268. |
[12] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
[13] | Li’an ZHU, Hong ZHANG. Nonhomogeneous image dehazing based on dual-branch conditional generative adversarial network [J]. Journal of Computer Applications, 2023, 43(2): 567-574. |
[14] | Ruoying WANG, Fan LYU, Liuqing ZHAO, Fuyuan HU. Floorplan generation algorithm integrating user requirements and boundary constraints [J]. Journal of Computer Applications, 2023, 43(2): 575-582. |
[15] | Lingling TAO, Bo LIU, Wenbo LI, Xiping HE. Controllable face editing algorithm with closed-form solution [J]. Journal of Computer Applications, 2023, 43(2): 601-607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||