计算机应用 ›› 2014, Vol. 34 ›› Issue (3): 760-762.DOI: 10.11772/j.issn.1001-9081.2014.03.0760
林克正,程卫月
LIN Kezheng,CHENG Weiyue
摘要:
针对稀疏保留投影(SPP)算法运行时间较长并且忽略了样本的类间差异信息的问题,在稀疏保留投影算法的基础上,提出了全局加权稀疏局部保留投影(GWSLPP)算法。该算法在保持样本的稀疏重构关系的同时,使样本具有很好的鉴别能力,算法通过对样本进行稀疏重构处理;然后对样本进行投影并且最大化样本的类间散度;最后利用得到的投影将样本分类。该算法分别在FERET人脸库和YALE人脸库上进行实验。实验结果表明,全局加权稀疏保留算法在执行时间和识别率综合性能上,优于局部保留投影(LPP)、SPP和FisherFace算法,执行时间只有25s,识别率能达到95%以上,实验数据验证了算法的有效性。
中图分类号: