[1] 田守财,孙喜利,路永钢.基于最近邻的随机非线性降维[J].计算机应用,2016,36(2):377-381.(TIAN S C, SUN X L, LU Y G. Stochastic nonlinear dimensionality reduction based on nearest neighbors[J]. Journal of Computer Applications, 2016, 36(2):377-381.) [2] 郝晓军,闫京海,樊友谊.大数据分析过程中的降维方法[J].航天电子对抗,2014(4):58-60.(HAO X J, YAN J H, FAN Y Y. Dimensionality reduction of large volumes of data analysis[J]. Aerospace Electronic Warfare, 2014(4):58-60). [3] COX M A A, COX T F. Multidimensional scaling[J]. Econometric Institute Research Papers, 2014, 46(2):1050-1057. [4] WEINBERGER K Q, SAUL L K. Unsupervised learning of image manifolds by semidefinite programming[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2004:988-995. [5] TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500):2319-2323. [6] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11):2579-2605. [7] VAN DER MAATEN L J P, POSTMA E O, VAN DEN HERIK H J. Dimensionality reduction:a comparative review[EB/OL].[2016-03-08]. https://static.aminer.org/pdf/PDF/000/272/419/comparative_investigation_on_dimension_reduction_and_regression_in_three_layer.pdf. [8] WILSON R C, HANCOCK E R, PEKALSKA E, et al. Spherical and hyperbolic embeddings of data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11):2255-2269. [9] WILSON R C, HANCOCK E R. Spherical embedding and classification[C]//Proceedings of the 2010 Joint IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recognition. Berlin:Springer, 2010:589-599. [10] ELAD A, KELLER Y, KIMMEL R. Texture mapping via spherical multi-dimensional scaling[C]//Scale Space and PDE Methods in Computer Vision, LNCS 3459. Berlin:Springer, 2005:443-455. [11] COX M A A, COX T F. Multidimensional scaling on the sphere[M]//EDWARDS D, RAUN N E. Compstat. Berlin:Springer, 1988:323-328. [12] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326. [13] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. Annals of Mathematical Statistics, 1951, 22(1):79-86. [14] KULLBACK S. Information Theory and Statistics[M]. Hoboken, NJ:John Wiley and Sons, 1959. [15] SUTSKEVER I. Training recurrent neural networks[EB/OL].[2016-02-09]. http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf. [16] SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[EB/OL].[2016-02-09]. http://www.cs.toronto.edu/~hinton/absps/momentum.pdf. [17] KENT J T. The Fisher-Bingham distribution on the sphere[J]. Journal of the Royal Statistical Society, 1982, 44(1):71-80. |