[1] YOUNG S, GASIC M, THOMSON B, et al. POMDP-based statistical spoken dialog systems: a review [J]. Proceedings of the IEEE, 2013, 101(5): 1160-1179. [2] SHAWAR B A, ATWELL E. Chatbots: are they really useful? Journal for Language Technology & Computational Linguistics, 2007, 22(1):29-49. [3] LI J, MONROE W, RITTER A, et al. Deep reinforcement learning for dialogue generation [EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1606.01541.pdf. [4] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks [C]//NIPS 2014: Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3104-3112. [5] LEVIN E, PIERACCINI R, ECKERT W. Learning dialogue strategies within the Markov decision process framework [C]//Proceedings of the 1997 IEEE Workshop on Automatic Speech Recognition and Understanding. Piscataway, NJ: IEEE, 1997: 72-79. [6] LEVIN E, PIERACCINI R, ECKERT W. A stochastic model of human-machine interaction for learning dialog strategies [J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(1): 11-23. [7] WALKER A, PRASAD R, STENT A. A trainable generator for recommendations in multimodal dialog [EB/OL]. [2017-01-10]. https://pdfs.semanticscholar.org/3385/397d3be400c3f4a6f79f9c47 e67e50333b45.pdf. [8] PIERACCINI R, SUENDERMANN D, DAYANIDHI K, et al. Are we there yet? Research in commercial spoken dialog systems [C]//TSD 2009: Proceedings of the 12th International Conference on Text, Speech and Dialogue. Berlin: Springer, 2009: 3-13. [9] YOUNG S, GASIC M, KEIZER S, et al. The hidden information state model: a practical framework for POMDP-based spoken dialogue management [J]. Computer Speech & Language, 2010, 24(2): 150-174. [10] GASIC M, BRESLIN C, HENDERSON M, et al. POMDP-based dialogue manager adaptation to extended domains [C]//SIGdial 2013: Proceedings of the 14th Annual SIGdial Meeting on Discourse and Dialogue. Metz, France: [s.n.], 2013: 214-222. [11] GASIC M, KIM D, TSIAKOULIS P, et al. Incremental on-line adaptation of POMDP-based dialogue managers to extended domains [EB/OL]. [2017-01-10]. https://pdfs.semanticscholar.org/6719/ef93142d64a69b52c916f9ee132b5339d9d1.pdf. [12] RITTER A, CHERRY C, DOLAN W B. Data-driven response generation in social media [C]//EMNLP 2011: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 583-593. [13] VINYALS O, LE Q. A neural conversational model [EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1506.05869.pdf. [14] LI J, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models [EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1510.03055.pdf. [15] SU P-H, GASIC M, MRKSIC N, et al. Continuously learning neural dialogue management [EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1606.02689.pdf. [16] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [EB/OL]. [2017-01-10]. http://www.bioinf.jku.at/publications/older/2604.pdf. [17] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1406.1078.pdf. [18] SORDONI A, BENGIO Y, VAHABI H, et al. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion [C]//CIKM 2015: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2015: 553-562. [19] HOCHREITER S, SCHMIDHUBER J. LSTM can solve hard long time lag problems [EB/OL]. [2017-01-10]. http://www.bioinf.jku.at/publications/older/3004.pdf. [20] PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation [C]//ACL 2002: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002: 311-318. [21] TIEDEMANN J. News from OPUS-a collection of multilingual parallel corpora with tools and interfaces[EB/OL]. [2017-01-10]. http://stp.lingfil.uu.se/~joerg/published/ranlp-V.pdf. [22] AMEIXA D, COHEUR L, FIALHO P, et al. Luke, I am your father: dealing with out-of-domain requests by using movies subtitles [C]//IVA 2014: Proceedings of the 14th International Conference on Intelligent Virtual Agents. Berlin: Springer, 2014: 13-21. [23] BENGIO Y. Practical recommendations for gradient-based training of deep architectures [M]//MONTAVON G, ORR G B, MVLLER K-R. Neural Networks: Tricks of the Trade. 2nd ed. Berlin: Springer, 2012: 437-478. [24] GASIC M, BRESLIN C, HENDERSON M, et al. Online policy optimisation of Bayesian spoken dialogue systems via human interaction [C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2013: 8367-8371. [25] SHANG L, LU Z, LI H. Neural responding machine for short-text conversation [EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1503.02364.pdf. [26] SINGH S, LITMAN D, KEARNS M, et al. Optimizing dialogue management with reinforcement learning: experiments with the NJFun system [J]. Journal of Artificial Intelligence Research, 2002, 16(1): 105-133. [27] BAHDANAU D, CHO K H, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1409.0473.pdf. [28] RANZATO M A, CHOPRA S, AULI M, et al. Sequence level training with recurrent neural networks [EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1511.06732.pdf. |