[1] ABO-ALIAN A, BADR N L, TOLBA M F. Data storage security service in cloud computing:challenges and solutions[M]//Multimedia Forensics and Security, Intelligent Systems Reference Library, vol 115. Cham:Springer, 2017:25-57. [2] 曹珍富.密码学的新发展[J].四川大学学报(工程科学版),2015,47(1):1-12. (CAO Z F. New development of cryptography[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(1):1-12.) [3] GENNARO R, GENTRY C, PARNO B. Non-interactive verifiable computing:outsourcing computation to untrusted workers[C]//CRYPTO 2010:Proceedings of the 2010 Conference on Advances in Cryptology, LNCS 6223. Berlin:Springer, 2010:465-482. [4] 李勇,曾振宇,张晓菲.支持属性撤销的外包解密方案[J].清华大学学报(自然科学版),2013,53(12):1664-1669. (LI Y, ZENG Z Y, ZHANG X F. Outsourced decryption scheme supporting attribute revocation[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(12):1664-1669.) [5] BENABBAS S, GENNARO R, VAHLIS Y. Verifiable delegation of computation over large datasets[C]//CRYPTO 2011:Proceedings of the 2011 Annual Cryptology Conference, LNCS 6841. Berlin:Springer, 2011:111-131. [6] BARBOSA M, FARSHIM P. Delegatable homomorphic encryption with applications to secure outsourcing of computation[C]//CT-RSA 2012:Proceedings of the Cryptographers' Track at the RSA Conference, LNCS 7178. Berlin:Springer, 2011:296-312. [7] FIORE D, GENNARO R. Publicly verifiable delegation of large polynomials and matrix computations, with applications[C]//CCS'12:Proceedings of the 2012 ACM Conference on Computer and Communications Security. New York:ACM, 2012:501-512. [8] ZHANG L F, SAFAVI-NAINI R. Private outsourcing of polynomial evaluation and matrix multiplication using multilinear maps[C]//Proceedings of the 12th International Conference on Cryptology and Network Security, LNCS 8257. Cham:Springer, 2013:329-348. [9] 任艳丽,谷大武,蔡建兴,等.隐私保护的可验证多元多项式外包计算方案[J].通信学报,2015,36(8):23-30. (REN Y L, GU D W, CAN J X, et al. Verifiably private outsourcing scheme for multivariate polynomial evaluation[J]. Journal on Communications, 2015, 36(8):23-30.) [10] PAPAMANTHOU C, SHI E, TAMASSIA R. Signatures of correct computation[C]//Proceedings of the 10th Theory of Cryptography Conference on Theory of Cryptography, LNCS 7785. Berlin:Springer, 2013:222-242. [11] FIORE D, GENNARO R, PASTRO V. Efficiently verifiable computation on encrypted data[C]//CCS'14:Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM, 2014:844-855. [12] ZHANG L F, SAFAVI-NAINI R. Batch verifiable computation of polynomials on outsourced data[C]//ESORICS 2015:Proceedings of the 2015 European Symposium on Research in Computer Security, LNCS 9327. Cham:Springer, 2015:167-185. [13] SUN Y, YU Y, LI X, et al. Batch verifiable computation with public verifiability for outsourcing polynomials and matrix computations[C]//Proceedings of the 21st Australasian Conference on Information Security and Privacy:Part I, LNCS 9722. Cham:Springer, 2016:293-309. [14] GARG S, GENTRY C, HALEVI S. Candidate multilinear maps from ideal lattices[C]//EUROCRYPT 2013:Proceedings of the 2013 Annual International Conference on the Theory and Applications of Cryptographic Techniques, LNCS 7881. Berlin:Springer, 2012:1-17. [15] BONEH D, GOH E-J, NISSIM K. Evaluating 2-DNF formulas on ciphertexts[C]//TCC 2005:Proceedings of the 2005 Theory of Cryptography Conference, LNCS 3378. Berlin:Springer, 2005:325-341. |