计算机应用 ›› 2018, Vol. 38 ›› Issue (4): 923-927.DOI: 10.11772/j.issn.1001-9081.2017092339
• 人工智能 • 下一篇
商建东1, 李盼乐1, 刘润杰1, 李润川2,3
收稿日期:
2017-09-28
修回日期:
2017-12-04
发布日期:
2018-04-09
出版日期:
2018-04-10
通讯作者:
李盼乐
作者简介:
商建东(1968-),男,河南郑州人,教授,博士,主要研究方向:数据挖掘、高性能计算;李盼乐(1992-),男,河南洛阳人,硕士研究生,主要研究方向:轨迹挖掘;刘润杰(1972-),男,河南安阳人,副教授,博士,主要研究方向:通信网络特性、混沌分形方法;李润川(1991-),男,河南商丘人,博士研究生,主要研究方向:智慧医疗、机器学习。
SHANG Jiandong1, LI Panle1, LIU Runjie1, LI Runchuan2,3
Received:
2017-09-28
Revised:
2017-12-04
Online:
2018-04-09
Published:
2018-04-10
摘要: 针对出租车空载率高、司机寻客难的问题,提出泊松-卡尔曼组合预测模型(PKCPM)。首先,采用加权非齐次泊松模型,针对出租车历史数据进行建模,得到目标时刻的估计值;其次,基于当天的实时数据,将临近时刻乘客需求的平均值作为目标时刻预测值;最后,将预测值和估计值作为卡尔曼滤波模型的输入参数,实现对目标时刻出租车乘客需求的预测,同时引入误差反向传播机制,减小下一次预测误差。基于郑州市出租车轨迹数据集,对组合模型与非齐次泊松模型(NHPM)、加权非齐次泊松模型(WNHPM)、支持向量机(SVM)等三种模型进行对比,实验结果显示PKCPM的误差比WNHPM、SVM分别降低了8.85个百分点、14.9个百分点。该模型能对不同时段内、不同空间网格的乘客需求进行预测,为出租车寻找乘客提供可靠的依据。
中图分类号:
商建东, 李盼乐, 刘润杰, 李润川. 基于加权时变泊松模型的出租车载客点推荐模型[J]. 计算机应用, 2018, 38(4): 923-927.
SHANG Jiandong, LI Panle, LIU Runjie, LI Runchuan. Recommendation model of taxi passenger-finding locations based on weighted non-homogeneous Poisson model[J]. Journal of Computer Applications, 2018, 38(4): 923-927.
[1] JING W P, HU L K, SHU L, et al. RPR:recommendation for passengers by roads based on cloud computing and taxis traces data[J]. Personal and Ubiquitous Computing, 2016, 20(3):337-347. [2] LEE J. Traveling pattern analysis for the design of location-dependent contents based on the taxi telematics system[EB/OL].[2017-05-10]. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE01623693. [3] LI B, ZHANG D Q, SUN L, et al. Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset[C]//Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops. Piscataway, NJ:IEEE, 2011:63-68. [4] 唐炉亮,郑文斌,王志强,等.城市出租车上下客的GPS轨迹时空分布探测方法[J].地球信息科学学报, 2015, 17(10):1179-1186.(TANG L L, ZHENG W B, WANG Z Q, et al. Space time analysis on the pick-up and drop-off of taxi passengers based on GPS big data[J]. Journal of Geo-Information Science, 2015, 17(10):1179-1186.) [5] 程静,刘家骏,高勇.基于时间序列聚类方法分析北京出租车出行量的时空特征[J].地球信息科学学报, 2016, 18(9):1227-1239.(CHENG J, LIU J J, GAO Y. Analyzing the spatio-temporal characteristics of Beijing's OD trip volume based on time series clustering method[J]. Journal of Geo-Information Science, 2016, 18(9):1227-1239.) [6] SHEN Y, ZHAO L G, FAN J. Analysis and visualization for hot spot based route recommendation using short-dated taxi GPS traces[J]. Information, 2015, 6(2):134-151. [7] LEE J, SHIN I, PARK G L. Analysis of the passenger pick-up pattern for taxi location recommendation[C]//NCM 2008:Proceedings of the Fourth International Conference on Networked Computing and Advanced Information Management. Piscataway, NJ:IEEE, 2008:199-204. [8] YUAN J, ZHENG Y, ZHANG L H, et al. T-Finder:a recommender system for finding passengers and vacant taxis[J]. IEEE Transactions on Knowledge & Data Engineering, 2013, 25(10):2390-2403. [9] YUAN J, ZHENG Y, ZHANG L, et al. Where to find my next passenger[C]//UbiComp 2011:Proceedings of the 13th International Conference on Ubiquitous Computing. New York:ACM, 2011:109-118. [10] 周春姐,戴鹏飞,王晓玲,等.面向移动用户的乘客需求预测系统[J].计算机研究与发展, 2015, 41(增刊1):143-148.(ZHOU C J, DAI P F, WANG X L, et al. A system of passenger demand prediction for mobile users[J]. Journal of Computer Research and Development, 2015, 41(S1):143-148.) [11] 王芮.基于GPS数据的城市出租车出行需求研究[D].济南:山东大学, 2016:44-45.(WANG R. Research on urban taxi travel demand based on GPS data[D]. Jinan:Shandong University, 2016:44-45.) [12] 林永杰, 邹难. 基于运营系统的出租车出行需求短时预测模型[J]. 东北大学学报(自然科学版), 2016, 37(9):1235-1240.(LIN Y J, ZOU N. Short-term prediction model of taxi passenger demand based on operation systems[J]. Journal of Northeastern University (Natural Science), 2016, 37(9):1235-1240.) [13] 王涛波, 黄宝军. 基于改进卡尔曼滤波的四维飞行航迹预测模型[J]. 计算机应用, 2014, 34(6):1812-1815.(WANG T B, HUANG B J. 4D flight trajectory prediction model based on improved Kalman filter[J]. Journal of Computer Applications, 2014, 34(6):1812-1815.) [14] 钱文逸, 蒋新华, 廖律超, 等. 基于时空上下文协同过滤的出租车载客点推荐算法[J]. 计算机应用, 2015, 35(6):1659-1662.(QIAN W Y, JIANG X H, LIAO L C, et al. Recommendation algorithm of taxi passenger-finding locations based on spatio-temporal context collaborative filtering[J]. Journal of Computer Applications, 2015, 35(6):1659-1662.) [15] MOREIRA-MARTIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3):1393-1402. [16] HOU Y, LI X, ZHAO Y, et al. Towards efficient vacant taxis cruising guidance[C]//Proceedings of the 2013 IEEE Global Communications Conference. Piscataway, NJ:IEEE, 2014:54-59. [17] 张红, 王晓明, 过秀成, 等. 出租车GPS轨迹大数据在智能交通中的应用[J]. 兰州理工大学学报,2016, 42(1):109-114.(ZHANG H, WANG X M, GUO X C, et al. Application of taxi GPS big trajectory data in intelligent traffic system[J]. Journal of Lanzhou University of Technology, 2016, 42(1):109-114.) [18] 姬波, 叶阳东, 肖煜. 基于信息瓶颈方法的出租车空载聚集区聚类算法[J]. 小型微型计算机系统, 2013, 34(9):2139-2143.(JI B, YE Y D, XIAO Y. Empty taxi areas clustering algorithm based on information bottleneck method[J]. Journal of Chinese Computer Systems, 2013, 34(9):2139-2143.) [19] 刘大有, 陈慧灵, 齐红, 等. 时空数据挖掘研究进展[J]. 计算机研究与发展, 2013, 50(2):225-239.(LIU D Y, CHEN H L, QI H, et al. Advances in spatiotemporal data mining[J]. Journal of Computer Research and Development, 2013, 50(2):225-239.) [20] GE Y, XIONG H, ALEXANDER T Z L, et al. An energy-efficient mobile recommender system[C]//KDD 2010:Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2010:899-908. [21] YUAN J, ZHENG Y, XIE X, et al. Driving with knowledge from the physical world[C]//KDD 2011:Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2011:316-324. [22] PHITHAKKITNUKOON S, VELOSO M, BENTO C, et al. Taxi-aware map:identifying and predicting vacant taxis in the city[C]//AmI 2010:Proceedings of the First International Joint Conference on Ambient Intelligence. Berlin:Springer, 2010:86-95. [23] GUI Z, YU H, TANG Y. Locating traffic hot routes from massive taxi tracks in clusters[J]. Journal of Information Science & Engineering, 2016, 32(1):113-131. [24] ZHANG D, SUN L, LI B, et al. Understanding taxi service strategies from taxi GPS traces[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1):123-135. [25] RAO F, ZHANG X, DONG Y, et al. Understanding the mobility pattern of passenger-searching taxis[C]//Proceedings of the 2014 IEEE 17th International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2014:290-295. [26] QIAO S, HAN N, ZHU W, et al. TraPlan:an effective three-in-one trajectory-prediction model in transportation networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3):1188-1198. [27] QIAO S, SHEN D, WANG X, et al. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models[J]. IEEE Transactions on Intelligent Transportation, 2015, 16(1):284-296. [28] 乔少杰, 韩楠, 李天瑞, 等. 一种基于空间编码技术的轨迹特征提取方法[J]. 中国科学:信息科学, 2017, 47(11):1523-1537.(QIAO S J, HAN N, LI T R, et al. A trajectory feature extraction approach based on spatial coding technique[J]. Chinese Science:Informationis, 2017, 47(11):1523-1537.) [29] QIAO S, HAN N, WANG J, et al. Predicting long-term trajectories of connected vehicles via the prefix-projection technique[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, PP(99):1-11 |
[1] | 宫智宇 王士同. 面向重尾噪声图像分类的残差网络学习方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[2] | 王虎 王晓峰 李可 马云洁. 融合多头自注意力的标签语义嵌入联邦类增量学习方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[3] | 刘晶鑫, 黄雯静, 徐亮胜, 黄冲, 吴建生. 字典学习与样本关联保持结合的无监督特征选择模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3766-3775. |
[4] | 宋逸飞, 柳毅. 基于数据增强和标签噪声的快速对抗训练方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3798-3807. |
[5] | 赵小阳 许新征 李仲年. 物联网应用中的可解释人工智能研究综述[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[6] | 余家宸, 杨晔. 基于裁剪近端策略优化算法的软机械臂不规则物体抓取[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3629-3638. |
[7] | 李志杰, 廖旭红, 李元香, 李青蓝. 基于基因关联分析的贝叶斯网络疾病样本分类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3449-3458. |
[8] | 黄雨鑫, 黄贻望, 黄辉. 基于浅层网络预测的元标签校正方法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3364-3370. |
[9] | 胡婕 郑启扬 孙军 张龑. 基于多关系标签图和局部动态重构学习的多标签分类模型[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[10] | 柴汶泽, 范菁, 孙书魁, 梁一鸣, 刘竟锋. 深度度量学习综述[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 2995-3010. |
[11] | 尹春勇, 周永成. 双端聚类的自动调整聚类联邦学习[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3011-3020. |
[12] | 曹锋, 杨小玲, 易见兵, 李俊. 矛盾体分离超演绎方法及应用[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3074-3080. |
[13] | 许鹏程 何磊 李川 钱炜祺 赵暾. 基于Transformer的深度符号回归方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[14] | 颜文婧 王瑞东 左敏 张青川. 基于风味嵌入异构图层次学习的食谱推荐模型[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[15] | 郭书剑 余节约 尹学松. 图正则化弹性网子空间聚类[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||