[1] JHA S, GUILLEN M, CHRISTOPHER W J. Employing transaction aggregation strategy to detect credit card fraud[J]. Expert Systems with Applications, 2012, 39(16):12650-12657. [2] van VLASSELAER V, BRAVO C, CAELEN O, et al. APATE:a novel approach for automated credit card transaction fraud detection using network-based extensions[J]. Decision Support Systems, 2015, 75:38-48. [3] BAHNSEN A C, AOUADA D, STOJANOVIC A, et al. Detecting credit card fraud using periodic features[C]//ICMLA 2015:Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications. Piscataway, NJ:IEEE, 2015:208-213. [4] SAVGE D, WANG Q M, CHOU P L, et al. Detection of money laundering groups using supervised learning in networks[EB/OL].[2018-05-10]. https://arxiv.org/pdf/1608.00708. [5] KHAC N A L, MARKOS S, KECHADI M. A data mining-based solution for detecting suspicious money laundering cases in an investment bank[C]//DBKDA 2010:Proceedings of the 2010 Second International Conference on Advances in Databases, Knowledge, and Data Applications. Piscataway, NJ:IEEE, 2010:235-240. [6] NEDA H, ALI H, MEHDI S. An intelligent anti-money laundering method for detecting risky users in the banking systems[J]. International Journal of Computer Applications, 2014, 97(22):35-39. [7] MICHALAK K, KORCZAK J. Graph mining approach to suspicious transaction detection[C]//FedCSIS 2011:Proceedings of the 2011 Federated Conference on Computer Science and Information Systems. Piscataway, NJ:IEEE, 2011:69-75. [8] 喻炜, 王建东. 基于交易网络特征向量中心度量的可疑洗钱识别系统[J]. 计算机应用, 2009, 29(9):2581-2585. (YU W, WANG J D. Suspicious money laundering detection system based on eigenvector centrality measure of transaction network[J]. Journal of Computer Applications, 2009, 29(9):2581-2585.) [9] SOLTANI R, NGUYEN U, YANG Y, et al. A new algorithm for money laundering detection based on structural similarity[C]//UEMCON 2016:Proceedings of the 2016 IEEE 7th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference. Piscataway, NJ:IEEE, 2016:1-7. [10] HUANG J, SUN H, HAN J, et al. SHRINK:a structural clustering algorithm for detecting hierarchical communities in networks[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York:ACM, 2010:219-228. [11] GIANLUCA S, PIERRE M, GREGOIRE J, et al. EVILCOHORT:detecting communities of malicious accounts on online services[C]//SEC 2015:Proceedings of the 24th USENIX Conference on Security Symposium. Berkeley:USENIX Association, 2015:563-578. [12] BLONDEL V D, GUILAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics:Theory and Experiment, 2008, 2008(10):P10008. [13] PRAKAS B A, SRIDHARAN A, SESHADRI M, et al. EigenSpokes:surprising patterns and scalable community chipping in large graphs[C]//PAKDD 2010:Proceedings of the 2010 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin:Springer, 2010:435-448. [14] SHAH N, BEUTEL A, GALLAGHER B, et al. Spotting suspicious link behavior with fBox:an adversarial perspective[C]//ICDM:Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway, NJ:IEEE, 2014:959-964. [15] JIANG M, BEUTEL A, CUI P, et al. Spotting suspicious behaviors in multimodal data:a general metric and algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8):2187-2200. [16] CHARIKAR M. Greedy approximation algorithms for finding dense components in a graph[C]//APPROX 2000:Proceedings of the Third International Workshop on Approximation Algorithms for Combinatorial Optimization. Berlin:Springer, 2000:84-95. [17] SHIN K, HOOI B, FALOUTSOS C. M-Zoom:fast dense-block detection in tensors with quality guarantees[C]//Proceedings of the 2016 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin:Springer, 2016:264-280. [18] SHIN K, HOOI B, FALOUTSOS C. Fast, accurate and flexible algorithms for dense subtensor mining[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(3):1-30. [19] JIN R, XIANG Y, RUAN N, et al. 3-HOP:a high-compression indexing scheme for reachability query[C]//SIGMOD 2009:Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. New York:ACM, 2009:813-826. [20] BATAGELJ V, BRANDES U. Efficient generation of large random networks[J]. Physical Review E:Covering Statistical, Nonlinear, Biological, and Soft Matter Physics, 2005, 71(3):036113. |