[1] 李明忠,毕长剑,刘小荷,等.空军作战仿真模型聚合与解聚研究[J].系统仿真学报,2008,20(14):3679-3684.(LI M Z, BI C J, LIU X H, et al. Research on model aggregation and disaggregation for air force combat simulation[J]. Journal of System Simulation, 2008, 20(14):3679-3684.) [2] 李凤霞,卢兆涵,雷正朝,等.基于队形的聚合解聚方法研究[J].系统仿真学报,2013,25(10):2308-2313.(LI F X, LU Z H, LEI Z Z, et al. Aggregation and disaggregation methods research based on formation[J]. Journal of System Simulation, 2013, 25(10):2308-2313.) [3] GOU C X, CAI B G. Multi-resolution entities aggregation and disaggregation method for train control system modeling and simulation based on HLA[C]//ITSC 2014:Proceedings of the 201417th International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2014:2367-2372. [4] 朱敏洁,周深根.多分辨率模型转换的触发机制[J].指挥控制与仿真,2015,37(5):44-47.(ZHU M J, ZHOU S G. Multi-resolution combat model triggering mechanism[J]. Command Control & Simulation, 2015, 37(5):44-47.) [5] AGGARWAL C C. Outlier Analysis[M]. 2nd ed. Berlin:Springer, 2016:286. [6] KATHAREIOS G, ANGHEL A, MATE A, et al. Catch it if you can:real-time network anomaly detection with low false alarm rates[C]//ICMLA 2017:Proceedings of the 16th IEEE International Conference on Machine Learning and Applications. Piscataway, NJ:IEEE, 2017:924-929. [7] BENKABOU S E, BENABDESLEM K, CANITIA B. Unsupervised outlier detection for time series by entropy and dynamic time warping[J]. Knowledge and Information Systems, 2018, 54(2):463-486. [8] YANG C L, LIAO W J. Adjacent Mean Difference (AMD) method for dynamic segmentation in time series anomaly detection[C]//SⅡ 2017:Proceedings of the 2017 IEEE/SICE International Symposium on System Integration. Piscataway, NJ:IEEE, 2017:241-246. [9] KHA N H, ANH D T. From cluster-based outlier detection to time series discord discovery[M]//LI X L, CAO T, LIM E P, et al. Trends and Applications in Knowledge Discovery and Data Mining, LNCS 9441. Cham:Springer, 2015:16-28. [10] REN H R, LIU M M, LI Z W, et al. A piecewise aggregate pattern representation approach for anomaly detection in time series[J]. Knowledge-Based Systems, 2017, 135:29-39. [11] ZHENG D Q, LI F H, ZHAO T J. Self-adaptive statistical process control for anomaly detection in time series[J]. Expert Systems with Applications, 2016, 57:324-336. [12] ZENG J, ZHANG L, SHI G T, et al. An ARIMA based real-time monitoring and warning algorithm for the anomaly detection[C]//ICPADS 2017:Proceedings of the 2017 IEEE 23rd International Conference on Parallel and Distributed Systems. Piscataway, NJ:IEEE, 2017:469-476. [13] NA G S, KIM D H, YU H. DILOF:effective and memory efficient local outlier detection in data streams[C]//KDD 2018:Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2018:1993-2002. [14] WANG L, XU L Y, XUE Y L, et al. Group behavior time series anomaly detection in specific network space based on separation degree[J]. Cluster Computing, 2016, 19(3):1201-1210. [15] AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262:134-147. [16] HAN J, KAMBER M, PEI J. Data Mining:Concepts and Techniques[M]. 3rd ed. San Francisco, CA:Morgan Kaufmann Publishers, 2011:351-376. [17] LPL职业联赛.2018LPL春季赛季后赛RNG vs WE第二局[EB/OL].[2018-09-12]. https://v.qq.com/x/cover/191162cgjvuzbxm/p00261fyo6v.html.(League of Legends Pro League. Royal Never Give Up vs. Team WE:LPL 2018 Spring Playoffs - Round 2[EB/OL].[2018-09-12]. https://v.qq.com/x/cover/191162cgjvuzbxm/p00261fyo6v.html.) [18] SATHE S, AGGARWAL C C. Subspace outlier detection in linear time with randomized hashing[C]//ICDM 2016:Proceedings of the 2016 IEEE 16th International Conference on Data Mining. Piscataway, NJ:IEEE, 2016:459-468. [19] MARTINS H, PALMA L, CARDOSO A, et al. A support vector machine based technique for online detection of outliers in transient time series[C]//ASCC 2015:Proceedings of the 10th Asian Control Conference. Piscataway, NJ:IEEE, 2015:1-6. [20] NING J, CHEN L T, ZHOU C, et al. Parameter k search strategy in outlier detection[J]. Pattern Recognition Letters, 2018, 112:56-62. |