[1] LEE J, BAGHERI B, KAO H. A cyber-physical systems architecture for industry 4.0-based manufacturing systems[J]. Manufacturing Letters, 2015, 3:18-23. [2] NGUYEN P H, ALI S, YUE T. Model-based security engineering for cyber-physical systems:a systematic mapping study[J]. Information and Software Technology, 2017, 83:116-135. [3] 汤奕,陈倩,李梦雅,等.电力信息物理融合系统环境中的网络攻击研究综述[J].电力系统自动化,2016,40(17):59-69.(TANG Y, CHEN Q, LI M Y, et al. Overview on cyber-attacks against cyber physical power system[J]. Automation of Electric Power Systems, 2016, 40(17):59-69.) [4] RAO A, CARREÓN N, LYSECKY R, et al. Probabilistic threat detection for risk management in cyber-physical medical systems[J]. IEEE Software, 2018, 35(1):38-43. [5] EHRENFELD J M. WannaCry, cybersecurity and health information technology:a time to act[J]. Journal of Medical Systems, 2017, 41(7):104. [6] WOSKOWSKI C. A pragmatic approach towards safe and secure medical device integration[C]//Proceedings of the 2014 International Conference on Computer Safety, Reliability, and Security, LNCS 8666. Berlin:Springer, 2014:342-353. [7] NAGARAJU V, FIONDELLA L, WANDJI T. A survey of fault and attack tree modeling and analysis for cyber risk management[C]//Proceedings of the 2017 IEEE International Symposium on Technologies for Homeland Security. Piscataway, NJ:IEEE, 2017:1-6. [8] FOVINO I N, MASERA M, de CIAN A. Integrating cyber attacks within fault trees[J]. Reliability Engineering & System Safety, 2009, 94(9):1394-1402. [9] STEINER M, LIGGESMEYER P. Qualitative and quantitative analysis of CFTs taking security causes into account[C]//Proceedings of the 2014 International Conference on Computer Safety, Reliability, and Security, LNCS 9338. Berlin:Springer, 2014:109-120. [10] KORDY B, PIÈTRE-CAMBACÉDÈS L, SCHWEITZER P. DAG-based attack and defense modeling:don't miss the forest for the attack trees[J]. Computer Science Review, 2014, 13/14:1-38. [11] CHOCKALINGAM S, HADŽIOSMANOVIC D, PIETERS W, et al. Integrated safety and security risk assessment methods:a survey of key characteristics and applications[C]//Proceedings of the 2016 International Conference on Critical Information Infrastructures Security, LNCS 10242. Berlin:Springer, 2016:50-62. [12] KRIAA S, PIETRE-CAMBACEDES L, BOUISSOU M, et al. A survey of approaches combining safety and security for industrial control systems[J]. Reliability Engineering & System Safety, 2015, 139:156-178. [13] KHORSHIDI H A, GUNAWAN I, IBRAHIM M Y. Data-driven system reliability and failure behavior modeling using FMECA[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3):1253-1260. [14] BOZZANO M, CIMATTI A, KATOEN J P, et al. Safety, dependability and performance analysis of extended AADL models[J]. The Computer Journal, 2011, 54(5):754-775. [15] JONES J A. An introduction to Factor Analysis of Information Risk (FAIR)[J]. Norwich Journal of Information Assurance, 2006, 2(1):67. [16] BEHNIA A, RASHID R A, CHAUDHRY J A. A survey of information security risk analysis methods[J]. SmartCR, 2012, 2(1):79-94. [17] SHERER A, ROSE J, ODDONE R. Ensuring functional safety compliance for ISO 26262[C]//Proceedings of the 52nd Annual Design Automation Conference. New York:ACM, 2015:98. [18] SESAMO. Security and safety modelling[EB/OL]. (2018-01-20)[2018-07-10]. http://sesamo-project.eu/. [19] KUMAR R, STOELINGA M. Quantitative security and safety analysis with attack-fault trees[C]//Proceedings of the 2017 IEEE 18th International Symposium on High Assurance Systems Engineering. Piscataway, NJ:IEEE, 2017:25-32. [20] MAX S. Integrating security concerns into safety analysis of embedded systems using component fault trees[D]. Kaiserslautern:Technische Universität Kaiserslautern, 2016:59-77. [21] ROTH M, LIGGESMEYER P. Modeling and analysis of safety-critical cyber physical systems using state/event fault trees[C]//Proceedings of the 32nd International Conference on Computer Safety, Reliability and Security, LNCS 8153. Berlin:Springer, 2013:253-273. [22] CEPIN M, MAVKO B. A dynamic fault tree[J]. Reliability Engineering & System Safety, 2002, 75(1):83-91. [23] RUIJTERS E, STOELINGA M. Fault tree analysis:a survey of the state-of-the-art in modeling, analysis and tools[J]. Computer Science Review, 2015, 15/16:29-62. [24] AKERS S B. Binary decision diagrams[J]. IEEE Transactions on Computers, 1978, 27(6):509-516. [25] BOUDALI H, STOELINGA M, CROUZEN P. A rigorous, compositional, and extensible framework for dynamic fault tree analysis[J]. IEEE Transactions on Dependable and Secure Computing, 2010, 7(2):128-143. [26] GULATI R, DUGAN J B. A modular approach for analyzing static and dynamic fault trees[C]//Proceedings of the 1997 Annual Reliability and Maintainability Symposium:Piscataway, NJ:IEEE, 1997:57-63. [27] KABIR S. An overview of fault tree analysis and its application in model based dependability analysis[J]. Expert Systems with Applications, 2017, 77:114-135. [28] HERSMANS H. Interactive Markov Chains:and the Quest for Quantified Quality[M]. Berlin:Springer, 2002:39-50. [29] KRIAA S, BOUISSOU M, COLIN F, et al. Safety and security interactions modeling using the BDMP formalism:case study of a pipeline[C]//Proceedings of the 2014 International Conference on Computer Safety, Reliability, and Security, LNCS 8666. Berlin:Springer, 2014:326-341. |