[1] GUSKOV I, SWELDENS W, SCHRÖDER P. Multiresolution signal processing for meshes[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM Press, 1999:325-334. [2] LEE C H, VARSHNEY A, JACOBS D W. Mesh saliency[J]. ACM Transactions on Graphics, 2005, 24(3):659-666. [3] KIM Y, VARSHNEY A, JACOBS D W, et al. Mesh saliency and human eye fixations[J]. ACM Transactions on Applied Perception, 2010, 7(2):Article No. 12. [4] SIPIRAN I, BUSTOS B. Harris 3D:a robust extension of the Harris operator for interest point detection on 3D meshes[J]. The Visual Computer, 2011, 27(11):963-976. [5] LAGA H. Data-driven approach for automatic orientation of 3D shapes[J]. The Visual Computer, 2011, 27(11):977-989. [6] DUTAGACI H, CHEUNG C P, GOSIL A. Evaluation of 3D interest point detection techniques via human-generated ground truth[J]. The Visual Computer, 2012, 28(9):901-917. [7] SONG R, LIU Y, MARTIN R R, ROSIN P L. 3D point of interest detection via spectral irregularity diffusion[J]. The Visual Computer, 2013, 29(6/7/8):695-705. [8] WU J, SHEN X, ZHU W. Mesh saliency with global rarity[J]. Graphical Models, 2013, 75(5):255-264. [9] 朱帆,杨风雷.基于特征点检测的三维模型最佳视点选择[J].计算机应用,2013,33(11):3172-3175.(ZHU F, YANG F L. Best viewpoints selection based on feature points detection[J]. Journal of Computer Applications, 2013, 33(11):3172-3175.) [10] 王海玲,王建,印桂生,等.多特征融合的网格模型简化方法[J].计算机应用,2013,33(11):3167-3171.(WANG H L, WANG J, YIN G S, et al. Multi-feature fusion method for mesh simplification[J]. Journal of Computer Applications, 2013, 33(11):3167-3171.) [11] GUPTA R K, GURUMOORTHY B. Classification, representation, and automatic extraction of deformation features in sheet metal parts[J]. Computer-Aided Design, 2013, 45(11):1469-1484. [12] 孙挺,张锦华,耿国华.基于局部特征概率密度估计的三维模型特征提取方法[J].计算机科学,2015,42(6):293-295,312.(SUN T, ZHANG J H, GENG G H. New architecture for extraction of 3D model features based on probabilistic density estimation of local surface features[J]. Computer Science, 2015, 42(6):293-295, 312.) [13] LEVALLOIS J, COEURJOLLY D, LACHAUD J. Scale-space feature extraction on digital surfaces[J]. Computers and Graphics, 2015, 51:177-189. [14] LIU H, DAI N, ZHONG B, et al. Extract feature curves on noisy triangular meshes[J]. Graphical Models, 2017, 93:1-13. [15] KONG T, ZHANG Y, FU X B. The model of feature extraction for free-form surface based on topological transformation[J]. Applied Mathematical Modelling, 2018, 64:386-397. [16] MURALEEDHARAN L P, KANNAN S S, KARVE A, et al. Random cutting plane approach for identifying volumetric features in a CAD mesh model[J]. Computers and Graphics, 2018, 70:51-61. [17] TORRENTE M, BIASOTTI S, FALCIDIENO B. Recognition of feature curves on 3D shapes using an algebraic approach to Hough transforms[J]. Pattern Recognition, 2018, 73:111-130. [18] SOLTANPOUR S, BOUFAMA B, WU Q M J. A survey of local feature methods for 3D face recognition[J]. Pattern Recognition, 2017, 72:391-406. [19] SONG R, LIU Y, MARTIN R R. Local-to-global mesh saliency[J]. The Visual Computer, 2018, 34(3):323-336. [20] CHEN H, LI M. A novel mesh saliency approximation for polygonal mesh segmentation[J]. Multimedia Tools and Applications, 2018, 77(13):17223-17246. [21] 刘斌.三角网格曲面上的特征阵列[J].机械工程学报,2019,55(3):120-129.(LIU B. Pattern design of freeform features on triangular meshes[J]. Journal of Mechanical Engineering, 2019, 55(3):120-129.) [22] 杨贤康,潘茂东,童伟华,等.基于L0优化的网格曲面特征线提取算法[J].计算机工程,2019,45(7):251-257,263.(YANF X K, PAN M D, TONG W H, et al. Feature lines extraction on meshes using L0 minimization[J]. Computer Engineering, 2019, 45(7):251-257, 263.) [23] 胡俊,刘斌,黄常标,等.网格曲面上自由形状特征交互式阵列设计[J].计算机集成制造系统,2019,25(1):61-70.(HU J, LIU B, HUANG C B, et al. Interactive pattern design of freeform features on mesh surface[J]. Computer Integrated Manufacturing Systems, 2019, 25(1):61-70.) [24] CHEN X, GOLOVINSKIY A, FUNKHOUSER T. A benchmark for 3D mesh segmentation[J]. ACM Transactions on Graphics, 2009, 28(3):Article No. 73. [25] 严严,陈日伟,王菡子,等.基于深度学习的人脸分析研究进展[J].厦门大学学报(自然科学版),2017,56(1):13-24.(YAN Y, CHEN R W, WANG H Z, et al. Recent advances on deep-learning-based face analysis[J]. Journal of Xianmen University (Natural Science), 2017, 56(1):13-24.) [26] 刘栋,李素,曹志冬.深度学习及其在图像物体分类与检测中的应用综述[J].计算机科学,2016,43(12):13-23.(LIU D, LI S, CAO Z D. State-of-the-art on deep learning and its application in image object classification and detection[J]. Computer Science, 2016, 43(12):13-23.) [27] 李鑫,陈雷霆,蔡洪斌.基于结构感知深度神经网络的显著性对象检测算法[J].计算机应用研究,2019,36(7):2195-2199.(LI X, CHEN L T, CAI H B. Salient object detection algorithm based on structure-sensitive deep neural network[J]. Application Research of Computers, 2019, 36(7):2195-2199.) [28] 杨军,王顺,周鹏.基于深度体素卷积神经网络的三维模型识别分类[J].光学学报,2019,39(4):314-324.(YANG J, WANG S, ZHOU P. Recognition and classification for three-dimensional model based on deep voxel convolution neural network[J]. Acta Optica Sinica, 2019, 39(4):314-324.) [29] CHARLES R Q, SU H, MO K. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:77-85. [30] LUCIANO L, HAMZA A B. Deep learning with geodesic moments for 3D shape classification[J]. Pattern Recognition Letters, 2018, 105:182-190. [31] FEY M, LENSSEN J E, WEICHERT F, et al. SplineCNN:fast geometric deep learning with continuous B-spline kernels[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:869-877. |