[1] 王朝,邹卫.原发性自发性气胸病因研究进展[J].临床肺科杂志,2015,20(6):1120-1122,1126.(WANG C, ZOU W. Progress in study of primary spontaneous pneumothorax[J]. Journal of Clinical Pulmonary Medicine, 2015, 20(6):1120-1122, 1126.) [2] THOMSEN L, NATHO O, FEIGEN U, et al. Value of digital radiography in expiration in detection of pneumothorax[J]. RoFo:Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin, 2014, 186(3):267-273. [3] BINTCLIFFE O, MASKELL N. Spontaneous pneumothorax[J]. British Medical Journal, 2014, 348:g2928. [4] SUTHAR M, MAHJOUBFAR A, SEALS K, et al. Diagnostic tool for pneumothorax[C]//Proceedings of the 2016 IEEE Photonics Society Summer Topical Meeting Series. Piscataway:IEEE, 2016:218-219. [5] MACDUFF A, ARNOLD A, HARVEY J. Management of spontaneous pneumothorax:British thoracic society pleural disease guideline 2010[J]. Thorax, 2010, 65(S2):ii18-ii31. [6] O'CONNOR A R, MORGAN W E. Radiological review of pneumothrax[J]. British Medical Journal, 2005, 330(7506):1493-1497. [7] SEOW A, KAZEROONI E A, PERNICANO P G, et al. Comparison of upright inspiratory and expiratory chest radiographs for detecting pneumothoraces[J]. American Journal of Roentgenology, 1996, 166(2):313-316. [8] 穆魁津.谈谈气胸的诊断方法[J].中国实用内科杂志,1995,15(4):205-206.(MU K J. Discussion on the diagnosis of pneumothorax[J]. Chinese Journal of Practical Internal Medicine, 1995, 15(4):205-206). [9] SANADA S, DOI K, MACMAHON H. Image feature analysis and computer-aided diagnosis in digital radiography:automated detection of pneumothorax in chest images[J]. Medical Physics, 1992, 19(5):1153-1160. [10] GEVA O, ZIMMERMAN-MORENO G, LIEBERMAN S, et al. Pneumothorax detection in chest radiographs using local and global texture signatures[C]//Proceedings of the Medical Imaging 2015:Computer-Aided Diagnosis, SPIE 9414. Bellingham:SPIE, 2015:Article No. 94141P. [11] CHAN Y H, ZENG Y Z, WU H C, et al. Effective pneumothorax detection for chest X-ray images using local binary pattern and support vector machine[J]. Journal of Healthcare Engineering, 2018, 2018:Article No. 2908517. [12] LECUN Y, BOSER B, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[C]//Proceedings of the 1989 International Conference on Neural Information Processing Systems. San Francisco:Morgan Kaufmann Publishers Inc., 1989:396-404. [13] 何雪英,韩忠义,魏本征.基于深度卷积神经网络的色素性皮肤病识别分类[J].计算机应用,2018,38(11):3236-3240.(HE X Y, HAN Z Y, WEI B Z. Pigmented skin lesion classification based dermoscopic images using deep convolutional neural network[J]. Journal of Computer Applications, 2018, 38(11):3236-3240). [14] WANG X, PENG Y, LU L, et al. Chestx-ray8:hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:3462-3471. [15] JUN T J, KIM D, KIM D. Automated diagnosis of pneumothorax using an ensemble of convolutional neural networks with multi-sized chest radiography images[EB/OL].[2019-03-22]. https://arxiv.org/ftp/arxiv/papers/1804/1804.06821.pdf. [16] TAYLOR A G, MIELKE C, MONGAN J. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks:a retrospective study[J]. PLOS Medicine, 2018, 15(11):e1002697. [17] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-03-22]. https://arxiv.org/pdf/1409.1556.pdf. [19] PINHEIRO P O, COLLOBERT R. From image-level to pixel-level labeling with convolutional networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1713-1721. [20] RIBEIRO M T, SINGH S, GUESTRIN C. "Why Should I Trust You?":explaining the predictions of any classifier[EB/OL].[2019-03-22]. https://arxiv.org/pdf/1602.04938.pdf. [21] FANG H, GUPTA S, IANDOLA F, et al. From captions to visual concepts and back[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1473-1482. [22] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2921-2929. [23] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:618-626. [24] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2261-2269. [25] BENGIO Y, COURVILLE A, VINCENT P. Representation learning:a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828. [26] MAHENDRAN A, VEDALDI A. Visualizing deep convolutional neural networks using natural pre-images[J]. International Journal of Computer Vision, 2016, 120(3):233-255. [27] 杨真真,匡楠,范露,等.基于卷积神经网络的图像分类算法综述[J].信号处理,2018,34(12):1474-1489.(YANG Z Z, KUANG N, FAN L, et al. Review of image classification algorithms based on convolutional neural networks[J]. Journal of Signal Processing, 2018, 34(12):1474-1489.) |