[1] CAO Z, HIDALGO G, SIMON T, et al. OpenPose:realtime multi-person 2D pose estimation using part affinity fields[EB/OL].[2018-12-30]. https://arxiv.org/pdf/1812.08008.pdf. [2] FANG H, XIE S, TAI Y W, et al. RMPE:regional multi-person pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2353-2362. [3] HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2980-2988. [4] WU J, ZHENG H, ZHAO B, et al. AI challenger:a large-scale dataset for going deeper in image understanding[EB/OL].[2018-12-30]. https://arxiv.org/pdf/1711.06475.pdf. [5] KE L, QI H, CHANG M C, et al. Multi-scale supervised network for human pose estimation[C]//Proceedings of the 2018 IEEE International Conference on Image Processing. Piscataway:IEEE, 2018:564-568. [6] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9912. Cham:Springer, 2016:483-499. [7] CHEN Y, SHEN C, WEI X, et al. Adversarial PoseNet:a structure-aware convolutional network for human pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:1212-1230. [8] RAJCHL M, LEE M C H, OKTAY O, et al. DeepCut:object segmentation from bounding box annotations using convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 2017, 36(2):674-683. [9] INSAFUTDINOV E, PISHCHULIN L, ANDRES B, et al. DeeperCut:a deeper, stronger, and faster multi-person pose estimation model[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9910. Cham:Springer, 2016:34-50. [10] HENDERSON P, FERRARI V. End-to-end training of object class detectors for mean average precision[C]//Proceedings of the 2016 Asian Conference on Computer Vision, LNCS 10115. Cham:Springer, 2016:198-213. [11] INSAFUTDINOV E, ANDRILUKA M, PISHCHULIN L, et al. ArtTrack:articulated multi-person tracking in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1293-1301. [12] ZHU X, JIANG Y, LUO Z. Multi-person pose estimation for posetrack with enhanced part affinity fields[EB/OL].[2018-12-30]. https://posetrack.net/workshops/iccv2017/pdfs/ML_Lab.pdf. [13] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2261-2269. [14] 黄奕晖,冯前进.基于三维全卷积DenseNet的脑胶质瘤MRI分割[J].南方医科大学学报,2018,38(6):661-668.(HUANG Y H, FENG Q J. Segmentation of brain tumor on magnetic resonance images using 3D full-convolutional densely connected convolutional networks[J]. Journal of Southern Medical University, 2018, 38(6):661-668.) [15] HOSANG J, BENENSON R, SCHIELE B. Learning non-maximum suppression[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6469-6477. [16] 李默涵,王宏志,李建中,等.一种基于二分图最优匹配的重复记录检测算法[J].计算机研究与发展,2009,46(S2):339-345.(LI M H, WANG H Z, LI J Z, et al. Duplicate record detection method based on optimal bipartite graph matching[J]. Journal of Computer Research and Development, 2009, 46(S2):339-345.) [17] WANG Z, FENG Z, ZHANG P. An iterative Hungarian algorithm based coordinated spectrum sensing strategy[J]. IEEE Communications Letters, 2011, 15(1):49-51. [18] PAPANDREOU G, ZHU T, KANAZAWA N, et al. Towards accurate multi-person pose estimation in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:3711-3719. [19] 黄龙,杨媛,王庆军,等.结合全卷积神经网络的室内场景分割[J].中国图象图形学报,2019,24(1):64-72.(HUANG L, YANG Y, WANG Q J, et al. Indoor scene segmentation based on fully convolutional neural networks[J]. Journal of Image and Graphics, 2019, 24(1):64-72.) [20] VEIT A, BELONGIE S. Convolutional networks with adaptive inference graphs[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11205. Cham:Springer, 2018:3-18. [21] 徐毅琼,葛临东,王波,等.基于非监督学习神经网络的自动调制识别研究与实现[J].计算机应用与软件,2011,28(1):79-81,95.(XU Y Q, GE L D, WANG B, et al. On automatic modulation recognition based on unsupervised learning neural networks and its implementation[J]. Computer Applications and Software, 2011, 28(1):79-81, 95.) |