[1] LEE J, CHOE Y. Robust PCA based on incoherence with geometrical interpretation[J]. IEEE Transactions on Image Processing, 2018, 27(4):1939-1950. [2] LIU C, JIN T, HOI S C H, et al. Collaborative topic regression for online recommender systems:an online and Bayesian approach[J]. Machine Learning, 2017, 106(5):651-670. [3] RAFAILIDIS D, MANOLOPOULOU S, DARAS P. A unified framework for multimodal retrieval[J]. Pattern Recognition, 2013, 46(12):3358-3370. [4] JIN X, HAN H, DAI Q. Plenoptic image coding using macropixel-based intra prediction[J]. IEEE Transactions on Image Processing, 2018, 27(8):3954-3968. [5] BERRY T, HARLIM J. Iterated diffusion maps for feature identification[J]. Applied and Computational Harmonic Analysis, 2018, 45(1):84-119. [6] 焦斌亮,张可.基于SPE的无线传感器网络定位算法[J].小型微型计算机系统,2013,34(2):269-271.(JIAO B L, ZHANG K. Localization algorithm based on stochastic proximity embedding in wireless sensor networks[J]. Journal of Chinese Computer Systems, 2013, 34(2):269-271.) [7] ZABALZA J, REN J, ZHENG J, et al. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging[J]. Neurocomputing, 2016, 185:1-10. [8] FAN Z, BI D, HE L, et al. Low-level structure feature extraction for image processing via stacked sparse denosing autoencoder[J]. Neurocomputing, 2017, 243:12-20. [9] 张春雨,韩立新,徐守晶.基于栈式自动编码的图像哈希算法[J].电子测量技术,2016,39(3):46-49,69.(ZHANG C Y, HAN L X, XU S J. Image hashing algorithm based on stacked autoencoder[J]. Electronic Measurement Technology, 2016, 39(3):46-49, 69.) [10] ZHANG Y, THING V L L. A semi-feature learning approach for tampered region localization across multi-format images[J]. Multimedia Tools and Applications, 2018, 77(19):25027-25052. [11] MAO K M, TANG R J, WANG X Q, et al. Feature representation using deep autoencoder for lung nodule image classification[J]. Complexity, 2018, 2018:Article ID 3078374. [12] DAI Y, WANG G. Analyzing tongue images using a conceptual alignment deep autoencoder[J]. IEEE Access, 2018, 6:5962-5972. [13] ZHAO G, WANG X, NIU Y, et al. Segmenting brain tissues from chinese visible human dataset by deep-learned features with stacked autoencoder[J]. BioMed Research International, 2016, 2016:Article ID 5284586. [14] 杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808-817.(YANG W Y.Unsupervised dimensionality reduction via autoencoder networks[J]. CAAI Transactions on Intelligent Systems, 2018, 13(5):808-817.) [15] GUAN R, WANG X, YANG M Q, et al. Multi-label deep learning for gene function annotation in cancer pathways[J]. Scientific Reports, 2018, 8(1):Article ID 267. [16] 徐培,蔡小路,何文伟,等.基于深度自编码网络的运动目标检测[J].计算机应用,2014,34(10):2934-2937,2962.(XU P, CAI X L, HE W W, et al. Motion detection based on deep auto-encoder networks[J]. Journal of Computer Applications, 2014, 34(10):2934-2937, 2962.) [17] ZHENG W, GONG S, XIANG T. Towards open-world person re-identification by one-shot group-based verification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(3):591-606. [18] BRERETON R G, LLOYD G R. Support vector machines for classification and regression[J]. The Analyst, 2010, 135(2):230-267. [19] VAN DER MAATEN L. Accelerating t-SNE using tree-based algorithms[J]. Journal of Machine Learning Research, 2014, 15(1):3221-3245. [20] YUAN S, WU X, XIANG Y. SNE:Signed Network Embedding[C]//Proceedings of the 2017 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 10235. Cham:Springer, 2017:183-195. [21] ZHANG S, WANG J, TAO X, et al. Constructing deep sparse coding network for image classification[J]. Pattern Recognition, 2017, 64:130-140. [22] OTHMAN E, BAZI Y, ALAJLAN N, et al. Using convolutional features and a sparse autoencoder for land-use scene classification[J]. International Journal of Remote Sensing, 2016, 37(10):2149-2167. [23] 沈承恩,何军,邓扬. 基于改进堆叠自动编码机的垃圾邮件分类[J].计算机应用,2016,36(1):158-162.(SHEN C E, HE J, DENG Y. Spam filtering based on modified stack auto-encoder[J]. Journal of Computer Applications, 2016, 36(1):158-162.) [24] BADEM H, CALISKAN A, BASTURK A, et al. Classification of human activity by using a stacked autoencoder[C]//Proceedings of the 2017 Medical Technologies National Congress. Piscataway:IEEE, 2017:1-4. [25] 杨帅,王鹃.基于堆栈降噪自编码器改进的混合推荐算法[J].计算机应用,2018,38(7):1866-1871.(YANG S, WANG J. Improved hybrid recommendation algorithm based on stacked denoising autoencoder[J]. Journal of Computer Applications, 2018, 38(7):1866-1871.) |