计算机应用 ›› 2019, Vol. 39 ›› Issue (12): 3420-3425.DOI: 10.11772/j.issn.1001-9081.2019061107

• 第十七届中国机器学习会议(CCML 2019)论文 • 上一篇    下一篇

无监督混阶栈式稀疏自编码器的图像分类学习

杨东海1,2, 林敏敏1,2, 张文杰1,2, 杨敬民1,2   

  1. 1. 闽南师范大学 计算机学院, 福建 漳州 363000;
    2. 福建省粒计算及其应用重点实验室(闽南师范大学), 福建 漳州 363000
  • 收稿日期:2019-04-29 修回日期:2019-06-25 发布日期:2019-08-26 出版日期:2019-12-10
  • 作者简介:杨东海(1988-),男,福建漳州人,硕士研究生,CCF会员,主要研究方向:计算机视觉;林敏敏(1994-),女,福建州人,硕士研究生,CCF会员,主要研究方向:机器学习、无线通信;张文杰(1984-),男,福建漳州人,博士,教授,CCF会员,主要研究方向:认知无线电、计算机网络体系结构;杨敬民(1980-),男,福建漳州人,硕士,副教授,CCF会员,主要研究方向:认知无线电、计算机网络体系结构、机器学习。
  • 基金资助:
    国家自然科学基金资助项目(61701213);福建省省属高校科研专项资助项目(JK2017031);教育部产学合作协同育人项目(201702098015,201702057020);漳州市自然科学基金资助项目(ZZ2018J21)。

Image classification learning via unsupervised mixed-order stacked sparse autoencoder

YANG Donghai1,2, LIN Minmin1,2, ZHANG Wenjie1,2, YANG Jingmin1,2   

  1. 1. School of Computer Science, Minnan Normal University, Zhangzhou Fujian 363000, China;
    2. Fujian Key Laboratory of Granular Computing and Application(Minnan Normal University), Zhangzhou Fujian 363000, China
  • Received:2019-04-29 Revised:2019-06-25 Online:2019-08-26 Published:2019-12-10
  • Contact: 杨敬民
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61701213), the Special Research Fund for Higher Education of Fujian (JK2017031), the Cooperative Education Project of Ministry of Education (201702098015, 201702057020), the Natural Science Foundation of Zhangzhou (ZZ2018J21).

摘要: 目前多数图像分类的方法是采用监督学习或者半监督学习对图像进行降维,然而监督学习与半监督学习需要图像携带标签信息。针对无标签图像的降维及分类问题,提出采用混阶栈式稀疏自编码器对图像进行无监督降维来实现图像的分类学习。首先,构建一个具有三个隐藏层的串行栈式自编码器网络,对栈式自编码器的每一个隐藏层单独训练,将前一个隐藏层的输出作为后一个隐藏层的输入,对图像数据进行特征提取并实现对数据的降维。其次,将训练好的栈式自编码器的第一个隐藏层和第二个隐藏层的特征进行拼接融合,形成一个包含混阶特征的矩阵。最后,使用支持向量机对降维后的图像特征进行分类,并进行精度评价。在公开的四个图像数据集上将所提方法与七个对比算法进行对比实验,实验结果表明,所提方法能够对无标签图像进行特征提取,实现图像分类学习,减少分类时间,提高图像的分类精度。

关键词: 无监督学习, 栈式自编码器, 降维, 混阶特征, 图像分类

Abstract: Most of the current image classification methods use supervised learning or semi-supervised learning to reduce image dimension. However, supervised learning and semi-supervised learning require image carrying label information. Aiming at the dimensionality reduction and classification of unlabeled images, a mixed-order feature stacked sparse autoencoder was proposed to realize the unsupervised dimensionality reduction and classification learning of the images. Firstly, a serial stacked sparse autoencoder network with three hidden layers was constructed. Each hidden layer of the stacked sparse autoencoder was trained separately, and the output of the former hidden layer was used as the input of the latter hidden layer to realize the feature extraction of image data and the dimensionality reduction of the data. Secondly, the features of the first hidden layer and the second hidden layer of the trained stacked autoencoder were spliced and fused to form a matrix containing mixed-order features. Finally, the support vector machine was used to classify the image features after dimensionality reduction, and the accuracy was evaluated. The proposed method was compared with seven comparison algorithms on four open image datasets. The experimental results show that the proposed method can extract features from unlabeled images, realize image classification learning, reduce classification time and improve image classification accuracy.

Key words: unsupervised learning, stacked sparse autoencoder, dimensionality reduction, mixed-order feature, image classification

中图分类号: