[1] YU Y,WANG L,ZHU Q. Intelligent fuzzy information retrieval based on ontology knowledge-base[J]. International Journal of Internet Protocol Technology,2018,11(3):180-191. [2] 刘钰峰, 李仁发. 基于查询-文档异构信息网络的半监督学习[J]. 通信学报,2014,35(8):40-47. (LIU Y F,LI R F. Semi-supervised learning by constructing query-document heterogeneous information network[J]. Journal on Communications,2014,35(8):40-47.) [3] 刘兆军. XML文档数据集聚类问题研究[D]. 长春:吉林大学, 2015:31-33. (LIU Z J. Study on clustering for XML document collection[D]. Changchun:Jilin University,2015:31-33.) [4] BOONGOEN T, IAM-ON N. Cluster ensembles:a survey of approaches with recent extensions and applications[J]. Computer Science Review,2018,28:1-25. [5] FRED A L N,JAIN A K. Combining multiple clustering using evidence accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):835-850. [6] IAM-ON N,BOONGOEN T,GARRETT S,et al. A link-based cluster ensemble approach for categorical data clustering[J]. IEEE Transactions on Knowledge Data Engineering, 2012, 24(3):413-425. [7] MINAEI-BIDGOLI B,PARVIN H,ALINEJAD-ROKNY H,et al. Effects of resampling method and adaptation on clustering ensemble efficacy[J]. Artificial Intelligence Review,2014,41(1):27-48. [8] HUSSAIN S F,MUSHTAQ M,HALIM Z. Multi-view document clustering via ensemble method[J]. Journal of Intelligent Information Systems,2014,43(1):81-99. [9] 李玉, 甄畅, 石雪, 等. 基于熵加权K-means全局信息聚类的高光谱图像分类[J]. 中国图象图形学报,2019,24(4):630-638.(LI Y,ZHEN C,SHI X,et al. Hyper spectral image classification algorithm based on entropy weighted K-means with global information[J]. Journal of Image and Graphics,2019,24(4):630-638.) [10] 赵军, 徐晓燕. 基于GraphX的分布式幂迭代聚类[J]. 计算机应用,2016,36(10):2710-2714. (ZHAO J,XU X Y. Distributed power iteration clustering based on GraphX[J]. Journal of Computer Applications,2016,36(10):2710-2714.) [11] YU Y,LIU Z. Document topic mining algorithm without parameters clustering based on dynamic threshold[J]. Journal of Computational Information Systems,2013,9(5):1965-1972. [12] CHANG C H,DAI B R. A fragment-based iterative consensus clustering algorithm with a robust similarity[J]. Knowledge Information System,2014,41(3):591-609. [13] 徐森, 皋军, 花小朋, 等. 一种改进的自适应聚类集成选择方法[J]. 自动化学报,2018,44(11):2103-2112.(XU S,GAO J, HUA X P,et al. An improved adaptive cluster ensemble selection approach[J]. Acta Automatica Sinica,2018,44(11):2103-2112.) [14] 陈黎飞, 姜青山, 王声瑞. 基于层次划分的最佳聚类数确定方法[J]. 软件学报,2008,19(1):62-72. (CHEN L F,JIANG Q S, WANG S R. A hierarchical method for determining the number of clusters[J]. Journal of Software,2008,19(1):62-72.) [15] GAN H,SANG N,HUANG R,et al. Using clustering analysis to improve semi-supervised classification[J]. Neurocomputing, 2013,101:290-298. [16] HASSAN M T,KARIM A,KIM J B,et al. CDIM:document clustering by discrimination information maximization[J]. Information Science,2015,316:87-106. [17] 赵孝礼, 赵荣珍. 全局与局部判别信息融合的转子故障数据集降维方法研究[J]. 自动化学报,2017,43(4):560-567. (ZHAO X L,ZHAO R Z. A method of dimension reduction of rotor faults data set based on fusion of global and local discriminant information[J]. Acta Automatica Sinica, 2017, 43(4):560-567.) [18] 胡凌超, 于洪. 一种基于投票的三支决策聚类集成方法[J]. 小型微型计算机系统,2016,37(8):1741-1745. (HU L C,YU H. Voting cluster ensemble approach based on three-way decisions[J]. Journal of Chinese Computer Systems,2016,37(8):1741-1745.) [19] 魏霖静, 练智超, 王联国, 等. 基于词条与语意差异度量的文档聚类算法[J]. 计算机科学,2016,43(12):229-233,259. (WEI L J,LIAN Z C,WANG L G,et al. Term and semantic difference metric based document clustering algorithm[J]. Computer Science,2016,43(12):229-233,259.) |