计算机应用 ›› 2020, Vol. 40 ›› Issue (5): 1243-1252.DOI: 10.11772/j.issn.1001-9081.2019091703
所属专题: 综述
• 人工智能 • 下一篇
杨锋1,2, 许玉1, 尹梦晓1,2, 符嘉成1, 黄冰1, 梁芳烜1
收稿日期:
2019-10-10
修回日期:
2019-12-16
发布日期:
2020-05-15
出版日期:
2020-05-10
通讯作者:
杨锋(1979—)
作者简介:
杨锋(1979—),男,广西玉林人,副教授,博士,CCF会员,主要研究方向:人工智能、网络信息安全、大数据与高性能计算、精准医学; 许玉(1993—),女,广西百色人,硕士研究生,主要研究方向:深度学习、行人重识别; 尹梦晓(1978—),女,河南南阳人,副教授,博士, CCF会员,主要研究方向:计算机图形学与虚拟现实、数字几何处理、图像与视频编辑、图论; 符嘉成(1995—),男,广西柳州人,硕士研究生,主要研究方向:深度学习、医学图像配准; 黄冰(1993—),女,广西南宁人,硕士研究生,主要研究方向:医学图像融合; 梁芳烜(1994—),女,广西横县人,硕士研究生,主要研究方向:深度学习、图像分割。
基金资助:
YANG Feng1,2, XU Yu1, YIN Mengxiao1,2, FU Jiacheng1, HUANG Bing1, LIANG Fangxuan1
Received:
2019-10-10
Revised:
2019-12-16
Online:
2020-05-15
Published:
2020-05-10
Contact:
YANG Feng, born in 1979, Ph. D., associate professor. His research interests include artificial intelligence, network information security, big data and high-performance computing, precision medicine.
About author:
YANG Feng, born in 1979, Ph. D., associate professor. His research interests include artificial intelligence, network information security, big data and high-performance computing, precision medicine.XU Yu, born in 1993, M. S. candidate. Her research interests include deep learning, pedestrian re-identification.YIN Mengxiao, born in 1978,Ph. D., associate professor. Her research interests include computer graphics and virtual reality, digital geometry processing, image and video editing, graph theory.FU Jiacheng, born in 1995, M. S. candidate. His research interests include deep learning, medical image registration.HUANG Bing, born in 1993, M. S. candidate. Her research interests include medical image fusion.LIANG Fangxuan, born in 1994, M. S. candidate. Her research interests include deep learning, image segmentation.
Supported by:
摘要: 行人重识别(Re-ID)是计算机视觉领域的热点问题,主要研究的是“如何关联位于不同物理位置的不同摄像机捕获到的特定人员的问题”。传统的行人Re-ID方法主要基于底层特征如局部描述符、颜色直方图和人体姿势的提取。近几年,针对行人遮挡和姿势不对齐等传统方法所遗留问题,业内提出了基于区域、注意力机制、姿势和生成对抗性网络(GAN)等深度学习的行人Re-ID方法,实验结果得到较明显的提高。故对深度学习在行人Re-ID中的研究进行了总结和分类,区别于以前的综述,将行人重识别方法分成四大类来讨论。首先,通过区域、注意力、姿势和GAN四类方法来综述基于深度学习的行人Re-ID方法;然后,分析这些方法在主流数据集上的mAP和Rank-1指标性能表现,结果显示基于深度学习的方法可以增强局部特征之间的联系并缩小域间隙,从而减少模型过拟合;最后,展望了行人Re-ID方法研究的发展方向。
中图分类号:
杨锋, 许玉, 尹梦晓, 符嘉成, 黄冰, 梁芳烜. 基于深度学习的行人重识别综述[J]. 计算机应用, 2020, 40(5): 1243-1252.
YANG Feng, XU Yu, YIN Mengxiao, FU Jiacheng, HUANG Bing, LIANG Fangxuan. Review on deep learning-based pedestrian re-identification[J]. Journal of Computer Applications, 2020, 40(5): 1243-1252.
1 PLANTINGA A . Things and persons[J]. Review of Metaphysics, 1961, 14(3):493-519. 2 ZHENG L , YANG Y , HAUPTMANN A G . Person reidentification: past, present and future[EB/OL]. [2018-10-10].https://arxiv.org/pdf/1610.02984.pdf. 3 HUANG T , RUSSELL S . Object identification in a Bayesian context[C]// Proceedings of the 15th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 1997: 1276-1282. 4 HAMEETE P , LEYSEN S , LAAN T VAN DER , et al . Intelligent multi-camera video surveillance[J]. International Journal on Information Technologies and Security, 2012, 4(4):51-62. 5 ZAJDEL W , ZIVKOVIC Z , KROSE B J A . Keeping track of humans: have I seen this person before?[C]// Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2005: 2081-2086. 6 SUN Y , CHEN Y , WANG X , et al . Deep learning face representation by joint identification-verification[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 1988-1996. 7 KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2012: 1097-1105. 8 YI D , LEI Z , LIAO S , et al . Deep metric learning for person re-identification[C]// Proceedings of the 22nd International Conference on Pattern Recognition. Piscataway: IEEE, 2014:34-39. 9 AHMED E , JONES M , MARKS T K . An improved deep learning architecture for person re-identification[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015:3908-3916. 10 YANG Y , YANG J , YAN J , et al . Salient color names for person re-identification[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8689. Cham: Springer, 2014: 536-551. 11 ZHAO R , OUYANG W , WANG X . Learning mid-level filters for person re-identification[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:144-151. 12 ZHANG Z , CHEN Y , SALIGRAMA V . A novel visual word co-occurrence model for person re-identification[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8927. Cham: Springer, 2014:122-133. 13 KÖSTINGER M , HIRZER M , WOHLHART P , et al . Large scale metric learning from equivalence constraints[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012:2288-2295. 14 LI W , WANG X . Locally aligned feature transforms across views[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3594-3601. 15 ZHENG Z , ZHENG L , YANG Y . Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:3754-3762. 16 LI Z , CHANG S , LIANG F , et al . Learning locally-adaptive decision functions for person verification[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013:3610-3617. 17 ZHAO R , OUYANG W , WANG X . Person re-identification by salience matching[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2528-2535. 18 LI W , ZHAO R , XIAO T , et al . DeepReID: deep filter pairing neural network for person re-identification[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:152-159. 19 KHAMIS S , KUO C H, SINGH V K , et al . Joint learning for attribute-consistent person re-identification[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8927. Cham: Springer, 2014: 134-146. 20 XIONG F , GOU M , CAMPS O , et al . Person re-identification using kernel-based metric learning methods[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8695. Cham: Springer, 2014:1-16. 21 FARENZENA M , BAZZANI L , PERINA A , et al . Person re-identification by symmetry-driven accumulation of local features[C]// Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010:2360-2367. 22 HAMDOUN O , MOUTARDE F , STANCIULESCU B , et al . Person re-identification in multi-camera system by signature based on interest point descriptors collected on short video sequences[C]// Proceedings of the 2nd ACM/IEEE International Conference on Distributed Smart Cameras. Piscataway: IEEE, 2008:1-6. 23 MATSUKAWA T , SUZUKI E . Person re-identification using CNN features learned from combination of attributes[C]// Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2017:2428-2433. 24 VARIOR R R , HALOI M , WANG G . Gated Siamese convolutional neural network architecture for human re-identification[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9912. Cham: Springer, 2016: 791-808. 25 CHENG D , GONG Y , ZHOU S , et al . Person re-identification by multi-channel parts-based CNN with improved triplet loss function[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:1335-1344. 26 LIN Y , ZHENG L , ZHENG Z , et al . Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161. 27 DALAL N , TRIGGS B . Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005:886-893. 28 郑伟诗,吴岸聪 . 非对称行人重识别:跨摄像机持续行人追踪[J]. 中国科学:信息科学, 2018, 48(5):545-563. (ZHENG W S, WU A C. Asymmetric person re-identification: cross-view person tracking in a large camera network[J]. SCIENTIA SINICA Informationis, 2018, 48(5): 545-563.) 29 CHEN Y , ZHENG W , LAI J . Mirror representation for modeling view-specific transform in person re-identification[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 3402-3408. 30 SU C , YANG F , ZHANG S , et al . Multi-task learning with low rank attribute embedding for person re-identification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3739-3747. 31 SU C , ZHANG S , XING J , et al . Deep attributes driven multi-camera person re-identification[C]// Proceedings of the 2016 European Conference on Computer Vision. Cham: Springer, 2016: 475-491. 32 苏松志,李绍滋,陈淑媛,等 . 行人检测技术综述[J]. 电子学报, 2012, 40(4):814-820. SU S Z , LI S Z , CHEN S Y , et al . A survey on pedestrian detection[J]. Acta Electronica Sinica, 2012, 40(4): 814-820. 33 PROSSER B J , ZHENG W , GONG S , et al . Person re-identification by support vector ranking[C]// Proceedings of the 2010 British Machine Vision Conference. Durham: BMVA, 2010: No.21. 34 PEDAGADI S , ORWELL J , VELASTIN S , et al . Local Fisher discriminant analysis for pedestrian re-identification[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3318-3325. 35 MIGNON A , JURIE F . PCCA: a new approach for distance learning from sparse pairwise constraints[C]// Proceedings of the 2012 Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012:2666-2672. 36 XU Y , LIN L , ZHENG W , et al . Human re-identification by matching compositional template with cluster sampling[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 3152-3159. 37 ZHAO R , OUYANG W , WANG X . Unsupervised salience learning for person re-identification[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3586-3593. 38 SUN Y , XU Q , LI Y , et al . Perceive where to focus: learning visibility-aware part-level features for partial person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 393-402. 39 SUN Y , ZHENG L , YANG Y , et al . Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208 . Cham: Springer, 2018: 501-518. 40 LIAO S , HU Y , ZHU X , et al . Person re-identification by local maximal occurrence representation and metric learning[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2197-2206. 41 MA A J , YUEN P C , LI J . Domain transfer support vector ranking for person re-identification without target camera label information[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 3567-3574. 42 WANG G , YUAN Y , CHEN X , et al . Learning discriminative features with multiple granularities for person re-identification[C]// Proceedings of the 2018 ACM Multimedia Conference. New York:ACM,2018:274-282. 43 GRAY D , TAO H . Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]// Proceedings of the 2008 European Conference on Computer Vision, LNCS 5302. Berlin: Springer, 2008: 262-275. 44 ZHENG W , GONG S , XIANG T . Reidentification by relative distance comparison[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3):653-668. 45 TAO D , JIN L , WANG Y , et al . Person re-identification by regularized smoothing KISS metric learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10): 1675-1685. 46 TAO D , JIN L , WANG Y , et al . Person reidentification by minimum classification error-based KISS metric learning[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 242-252. 47 PORIKLI F . Inter-camera color calibration by correlation model function[C]// Proceedings of the 2003 International Conference on Image Processing. Piscataway: IEEE, 2003:II-133. 48 PROSSER B , GONG S , XIANG T . Multi-camera matching using bi-directional cumulative brightness transfer functions[C]// Proceedings of the 2008 British Machine Vision Conference. Durham: BMVA, 2008: No.64. 49 LI W , ZHU X , GONG S . Harmonious attention network for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2285-2294. 50 RISTANI E , SOLERA F , ZOU R , et al. Performance measures and a data set for multi-target , multi-camera tracking[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9914. Cham: Springer, 2016:17-35. 51 ZHAO H , TIAN M , SUN S , et al . Spindle Net: person re-identification with human body region guided feature decomposition and fusion[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:907-915. 52 ZHENG L , HUANG Y , LU H , et al . Pose invariant embedding for deep person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(9):4500-4509. 53 WEI L , ZHANG S , YAO H , et al . GLAD: global-local-alignment descriptor for pedestrian retrieval[C]// Proceedings of the 25th ACM Multimedia Conference. New York: ACM, 2017: 420-428. 54 YAO H , ZHANG S , HONG R , et al . Deep representation learning with part loss for person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(6): 2860-2871. 55 ZHANG X , LUO H , FAN X , et al . AlignedReID: surpassing human-level performance in person re-identification[EB/OL]. [2018-11-08]. https://arxiv.org/pdf/1711.08184.pdf. 56 HE L , LIANG J , LI H , et al . Deep spatial feature reconstruction for partial person re-identification: alignment-free approach[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7073-7082. 57 WU L , SHEN C , HENGEL A VAN DEN . PersonNet: person re-identification with deep convolutional neural networks[EB/OL]. [2019-01-10].https://arxiv.org/pdf/1601.07255.pdf. 58 ZHANG Y , LI X , ZHAO L , et al . Semantics-aware deep correspondence structure learning for robust person re-identification[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016:3545-3551. 59 MATSUKAWA T , OKABE T , SUZUKI E , et al . Hierarchical gaussian descriptor for person re-identification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1363-1372. 60 VARIOR R R , SHUAI B , LU J , et al . A Siamese long short-term memory architecture for human re-identification[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9911. Cham: Springer, 2016:135-153. 61 ZHAO L , LI X , ZHUANG Y , et al . Deeply-learned part-aligned representations for person re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:3239-3248. 62 LIU X , ZHAO H , TIAN M , et al . HydraPlus-Net: attentive deep features for pedestrian analysis[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:350-359. 63 SHEN Y , LIN W , YAN J , et al . Person re-identification with correspondence structure learning[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3200-3208. 64 ZHENG W , LI X , XIANG T , et al . Partial person re-identification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:4678-4686. 65 WANG H , GONG S , XIANG T . Unsupervised learning of generative topic saliency for person re-identification[C]// Proceedings of the 2014 British Machine Vision Conference. Durham: BMVA, 2014: No.19. 66 XU J , ZHAO R , ZHU F , et al . Attention-aware compositional network for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2119-2128. 67 LI S , BAK S, CARR P , et al . Diversity regularized spatiotemporal attention for video-based person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 369-378. 68 CHEN D , LI H , XIAO T , et al . Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1169-1178. 69 SU C , LI J , ZHANG S , et al . Pose-driven deep convolutional model for person re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3980-3989. 70 LIU J , NI B , YAN Y , et al . Pose transferrable person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4099-4108. 71 SARFRAZ M S , SCHUMANN A , EBERLE A , et al . A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 420-429. 72 MA A J , LI P . Query based adaptive re-ranking for person re-identification[C]// Proceedings of the 2014 Asian Conference on Computer Vision, LNCS 9007. Cham: Springer, 2014: 397-412. 73 GARCíA J , MARTINEL N , MICHELONI C , et al . Person re-identification ranking optimisation by discriminant context information analysis[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1305-1313. 74 LENG Q , HU R , LIANG C , et al . Person re-identification with content and context re-ranking[J]. Multimedia Tools and Applications, 2015, 74(17): 6989-7014. 75 YE M , LIANG C , YU Y , et al . Person reidentification via ranking aggregation of similarity pulling and dissimilarity pushing[J]. IEEE Transactions on Multimedia, 2016, 18(12): 2553-2566. 76 ZHONG Z , ZHENG L , CAO D , et al . Re-ranking person re-identification with k-reciprocal encoding[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:3652-3661. 77 ZHONG Z , ZHENG L , ZHENG Z , et al . Camera style adaptation for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5157-5166. 78 ZHU J Y , PARK T , ISOLA P , et al . Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. 79 ZHU Z , HUANG T , SHI B , et al . Progressive pose attention transfer for person image generation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2342-2351. 80 SONG S , ZHANG W , LIU J , et al . Unsupervised person image generation with semantic parsing transformation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2352-2361. 81 DENG W , ZHENG L , YE Q , et al . Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 994-1003. 82 WEI L , ZHANG S , GAO W , et al . Person transfer GAN to bridge domain gap for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 79-88. 83 LI W , ZHAO R , WANG X . Human reidentification with transferred metric learning[C]// Proceedings of the 2012 Asian Conference on Computer Vision, LNCS 7724. Berlin: Springer, 2012:31-44. 84 GRAY D , BRENNAN S , TAO H . Evaluating appearance models for recognition, reacquisition , and tracking[C]// Proceedings of the 2007 IEEE International Workshop on Performance Evaluation for Tracking and Surveillance. Piscataway: IEEE, 2007: 1-7. 85 EVERINGHAM M , WINN J . The PASCAL Visual Object Classes challenge 2012 VOC2012) development kit[EB/OL]. [2019-03-20]. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/devkit_doc.pdf. 86 EVERINGHAM M , GOOL L VAN , WILLIAMS C K I , et al . The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. 87 PUMAROLA A , AGUDO A , SANFELIU A , et al . Unsupervised person image synthesis in arbitrary poses[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8620-8628. |
[1] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[2] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[3] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[4] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[5] | 任烈弘, 黄铝文, 田旭, 段飞. 基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2739-2746. |
[6] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[7] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[8] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[9] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[10] | 贾洁茹, 杨建超, 张硕蕊, 闫涛, 陈斌. 基于自蒸馏视觉Transformer的无监督行人重识别[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2893-2902. |
[11] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[12] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[13] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[14] | 陈彤, 杨丰玉, 熊宇, 严荭, 邱福星. 基于多尺度频率通道注意力融合的声纹库构建方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2407-2413. |
[15] | 汪才钦, 周渝皓, 张顺香, 王琰慧, 王小龙. 基于语境增强的新能源汽车投诉文本方面-观点对抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2430-2436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||