[1] 于硕. 交通标志识别技术综述[J]. 科技资讯, 2019, 17(6):15-16. (YU S. Overview of traffic sign recognition technology[J]. Science and Technology Information, 2019, 17(6):15-16.) [2] FLEYEH H, BISWAS R, DAVAMI E. Traffic sign detection based on AdaBoost color segmentation and SVM classification[C]//Proceedings of the 2013 Eurocon. Piscataway:IEEE, 2013:2005-2010. [3] CREUSEN I M, WIJNHOVEN R G J, HERBSCHLEB E, et al. Color exploitation in hog-based traffic sign detection[C]//Proceedings of the 2010 IEEE International Conference on Image Processing. Piscataway:IEEE, 2010:2669-2672. [4] 杜影丽,贾永红,韩静敏. 自然场景车载视频道路交通限速标志的检测与识别方法[J]. 测绘地理信息, 2018, 43(2):32-34, 37. (DU Y L, JIA Y H, HAN J M. A detection and recognition method for traffic speed limit signs based on vehicle videos[J]. Journal of Geomatics, 2018, 43(2):32-34, 37.) [5] 李志军,崔利娟. 基于深度森林的交通标志识别方法研究[J]. 工业控制计算机, 2019, 32(5):114-115, 120. (LI Z J, CUI L J. Research on traffic sign recognition algorithm based on deep forest[J]. Industrial Control Computer, 2019, 32(5):114-115, 120.) [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2012, 1:1097-1105. [7] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:779-788. [10] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham:Springer, 2016:21-37. [11] SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]//Proceedings of the 2011 International Joint Conference on Neural Networks. Piscataway:IEEE, 2011:2809-2813. [12] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer:benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32:323-332. [13] ZHU Z, LIANG D, ZHANG S, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2110-2118. [14] WANG G, XIONG Z, LIU D, et al. Cascade mask generation framework for fast small object detection[C]//Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE, 2018:1-6. [15] REDMON J, FARHADI A. YOLO v3:an incremental improvement[EB/OL].[2019-04-08].https://arxiv.org/pdf/1804.02767.pdf. [16] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1800-1807. [17] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:658-666. [18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [19] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6517-6525. [20] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [21] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:936-944. |