[1] DANTZIG G B. Discrete variable extremum problems[J]. Operations Research,1957,5(2):266-277. [2] HAN K H,KIM J H. Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 Congress on Evolutionary Computation. Piscataway:IEEE,2000:1354-1360. [3] 张玲玲, 张弘. 0-1背包问题的预期效率和线性拟合求解[J]. 计算机应用,2014,34(9):2581-2584.(ZHANG L L,ZHANG H. Solution of 0-1 knapsack problem based on expected efficiency and linear fitting[J]. Journal of Computer Applications,2014,34(9):2581-2584.) [4] 杨洋, 潘大志, 刘益, 等. 折扣{0-1}背包问题的简化新模型及遗传算法求解[J]. 计算机应用,2019,39(3):656-662.(YANG Y, PAN D Z,LIU Y,et al. New simplified model of discounted{0-1} knapsack problem and solution by genetic algorithm[J]. Journal of Computer Applications,2019,39(3):656-662.) [5] 韩小雷. 粒子群-模拟退火融合算法及其在函数优化中的应用[D]. 武汉:武汉理工大学,2008:15-23.(HAN X L. The particle swarm-simulated annealing fusion algorithm and its application in function optimization[D]. Wuhan:Wuhan University of Technology,2008:15-23.) [6] ZHAN S,WANG L,ZHANG Z,et al. Noising methods with hybrid greedy repair operator for 0-1 knapsack problem[J]. Memetic Computing,2020,12(1):37-50. [7] 李士勇. 蚁群优化算法及其应用研究进展[J]. 计算机测量与控制,2003,11(12):911-913,917.(LI S Y. Progresses in ant colony optimization algorithm with applications[J]. Computer Measurement and Control,2003,11(12):911-913,917.) [8] KENNEDY J,EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks. Piscataway:IEEE,1995:1942-1948. [9] SRINIVAS N, DEB K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248. [10] FENG Y,WANG G,GAO X. A novel hybrid cuckoo search algorithm with global harmony search for 0-1 knapsack problems[J]. International Journal of Computational Intelligence Systems, 2016,9(6):1174-1190. [11] FENG Y,WANG G,DEB S,et al. Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization[J]. Neural Computing and Applications,2017,28(7):1619-1634. [12] 欧阳海滨, 高立群, 孔祥勇, 等. 一种求解0-1背包问题的二进制修正和声搜索算法[J]. 控制与决策,2014,29(7):1174-1180.(OUYANG H B,GAO L Q,KONG X Y,et al. A binary modified harmony search algorithm for 0-1 knapsack problem[J]. Control and Decision,2014,29(7):1174-1180.) [13] 王小平, 曹立明. 遗传算法-理论、应用与软件实现[M]. 西安:西安交通大学出版社,2002:136-140. (WANG X P,CAO L M. Genetic Algorithm-Theory, Application and Software Implementation[M]. Xi'an:Xi'an Jiaotong University Press, 2002:136-140.) [14] MICHALEWICZ Z. Genetic Algorithm + Data Structure=Evolution Programs:3rd,Revised and Extended Edition[M]. Berlin:Springer,1996:13-103. [15] 徐宗本. 计算智能——模拟进化计算[M]. 北京:高等教育出版社,2004:72-87. (XU Z B. Computational Intelligence-Simulated Evolutionary Computation[M]. Beijing:Higher Education Press,2004:72-87.) [16] 贺毅朝, 刘坤起, 张翠军, 等. 求解背包问题的贪心遗传算法及其应用[J]. 计算机工程与设计,2007,28(11):2655-2657,2681. ((HE Y C,LIU K Q,ZHANG C J,et al. Greedy genetic algorithm for solving knapsack problems and its applications[J]. Computer Engineering and Design, 2007, 28(11):2655-2657, 2681.) [17] 白东玲, 郭绍永. 一种改进的混合遗传算法求解0_1背包问题[J]. 电子设计工程,2013,21(14):9-11.(BAI D L,GUO S Y. An improved hybrid genetic algorithm for 0_1 knapsack problem[J]. Electronic Design Engineering,2013,21(14):9-11.) [18] 刘寒冰, 张亚娟. 求解0-1背包问题的改进混合遗传算法[J]. 计算机系统应用,2015,24(6):197-201.(LIU H B,ZHANG Y J. Improved hybrid genetic algorithm for solving 0-1 knapsack problem[J]. Computer Systems and Applications,2015,24(6):197-201.) [19] 金慧敏, 马良. 遗传退火进化算法在背包问题中的应用[J]. 上海理工大学学报,2004,26(6):561-564.(JIN H M,MA L. Genetic annealing evolutionary algorithm applied to the knapsack problem[J]. Journal of University of Shanghai for Science and Technology,2004,26(6):561-564.) [20] 张盛意, 蔡之华, 占志刚. 基于改进模拟退火的遗传算法求解0-1背包问题[J]. 微电子学与计算机,2011,28(2):61-64. (ZHANG S Y,CAI Z H,ZHANG Z G. Solving 0-1 knapsack problem based on genetic algorithm with improved simulated annealing[J]. Microelectronics and Computer,2011,28(2):61-64.) [21] 吕晓峰, 张勇亮, 马羚. 一种求解0-1背包问题的改进遗传算法[J]. 计算机工程与应用,2011,47(34):44-46,63.(LYU X F, ZHANG Y L,MA L. Improved genetic algorithm to 0-1 knapsack problem[J]. Computer Engineering and Applications,2011,47(34):44-46,63.) [22] FENG Y,YANG J,WU C,et al. Solving 0-1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation[J]. Memetic Computing,2018,10(2):135-150. [23] KONG X,GAO L,OUYANG H,et al. A simplified binary harmony search algorithm for large scale 0-1knapsack problems[J]. Expert Systems with Applications,2015,42(12):5377-5355. [24] SCHAFFER J D,CARUANA R,ESHELMAN L J,et al. A study of control parameters affecting online performance of genetic algorithms for function optimization[C]//Proceedings of the 3rd International Conference on Genetic Algorithms. San Francisco:Morgan Kaufmann Publishers Inc.,1989:51-60. [25] FENG Y,WANG G,DONG J,et al. Opposition-based learning monarch butterfly optimization with Gaussian perturbation for largescale 0-1 knapsack problem[J]. Computers and Electrical Engineering,2018,67:454-468. |