[1] 朱煜, 赵江坤, 王逸宁, 等. 基于深度学习的人体行为识别算法综述[J]. 自动化学报,2016,42(6):848-857.(ZHU Y,ZHAO J K,WANG Y N,et al. A review of human action recognition based on deep learning[J]. Acta Automatica Sinica,2016,42(6):848-857.) [2] FEICHTENHOFER C, FAN H, MALIK J, et al. SlowFast networks for video recognition[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:6201-6210. [3] TRAN D,WANG H,TORRESANI L,et al. A closer look at spatiotemporal convolutions for action recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6450-6459. [4] 陆中秋, 侯振杰, 陈宸, 等. 基于深度图像与骨骼数据的行为识别[J]. 计算机应用,2016,36(11):2979-2984,2992.(LU Z Q, HOU Z J,CHEN C,et al. Action recognition based on depth images and skeleton data[J]. Journal of Computer Applications, 2016,36(11):2979-2984,2992.) [5] 许艳, 侯振杰, 梁久祯, 等. 深度图像与骨骼数据的多特征融合人体行为识别[J]. 小型微型计算机系统,2018,39(8):1865-1870. (XU Y,HOU Z J,LIANG J Z,et al. Human action recognition with multi-feature fusion by depth image and skeleton data[J]. Journal of Chinese Computer Systems,2018,39(8):1865-1870.) [6] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:568-576. [7] JOHANSSON G. Visual perception of biological motion and a model for its analysis[J]. Perception and Psychophysics,1973,14(2):201-211. [8] REN B,LIU M,DING R,et al. A survey on 3D skeleton-based action recognition using learning method[EB/OL].[2020-02-14]. https://arxiv.org/pdf/2002.05907.pdf. [9] YAN S,XIONG Y,LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL].[2019-01-25]. https://arxiv.org/pdf/1801.07455.pdf. [10] SHI L,ZHANG Y,CHENG J,et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:12018-12027. [11] LI M, CHEN S, CHEN X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:3590-3698. [12] SONG Y, ZHANG Z, WANG L. Richly activated graph convolutional network for action recognition with incomplete skeletons[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway:IEEE,2019:1-5. [13] KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2019-02-22]. https://arxiv.org/pdf/1609.02907.pdf. [14] HU J,ZHENG W,LAI J,et al. Jointly learning heterogeneous features for RGB-D activity recognition[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:5344-5352. [15] WANG L,HUYNH DU Q,KONIUSZ PIOTR. A comparative review of recent Kinect-based action recognition algorithms[J]. IEEE Transactions on Image Processing,2019,29:15-28. [16] 盖赟, 荆国栋. 多尺度方法结合卷积神经网络的行为识别[J]. 计算机工程与应用,2019,55(2):100-103.(GE Y,JING G D. Human action recognition based on convolution neural network combined with multi-scale method[J]. Computer Engineering and Applications,2019,55(2):100-103.) [17] 管珊珊, 张益农. 基于残差时空图卷积网络的3D人体行为识别[J]. 计算机应用与软件,2020,37(3):198-201,250. (GUAN S S,ZHANG Y N. 3D human behavior recognition based on residual spatio-temporal graph convolutioan network[J]. Computer Applications and Software, 2020, 37(3):198-201,250.) [18] 万晓依. 基于时空结构关系的3D人体行为识别研究[D]. 苏州:苏州大学,2018:1-3.(WAN X Y. Research on 3D human action recognition base on spatio-temporal structure relationship[D]. Suzhou:Soochow University,2018:1-3.) [19] SHAHROUDY A,LIU J,NG T T,et al. NTU RGB+D:a large scale dataset for 3D human activity analysis[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1010-1019. [20] LIU J,SHAHROUDY A,PEREZ M,et al. NTU RGB+D 120:a large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(10):2684-2707. [21] DUVENAUD D,MACLAURIN D,AGUILERA-IPARRAGUIRRE J,et al. Convolutional networks on graphs for learning molecular fingerprints[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:2224-2232. [22] NIEPERT M,AHMED M,KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org,2016:2014-2023. [23] BRUNA J,ZAREMBA W,SZLAM A,et al. Spectral networks and locally connected networks on graphs[EB/OL].[2019-05-21]. https://arxiv.org/pdf/1312.6203.pdf. [24] KE Q,BENNAMOUN M,AN S,et al. A new representation of skeleton sequences for 3D action recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4570-4579. [25] SHUMAN D I,NARANG S K.,FROSSARD P,et al. The emerging field of signal processing on graphs:extending highdimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine,2013,30(3):83-98. [26] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[EB/OL].[2019-10-29]. https://openreview.net/pdf?id=BJJsrmfCZ. [27] HU J,ZHENG W,MA L,et al. Early action prediction by soft regression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(11):2568-2583. [28] HU J,ZHENG W,LAI J,et al. Jointly learning heterogeneous features for RGB-D activity recognition[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:5344-5352. [29] LIU J,SHAHROUDY A,XU D,et al. Spatio-temporal LSTM with trust gates for 3D human action recognition[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9907. Cham:Springer,2016:816-833. [30] LIU J,SHAHROUDY A,XU D,et al. Skeleton-based action recognition using spatio-temporal LSTM network with trust gates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(12):3007-3021. [31] LIU J,WANG G,HU P,et al. Global context-aware attention LSTM networks for 3D action recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:3671-3680. [32] LIU J,SHAHROUDY A,WANG G,et al. Skeleton-based online action prediction using scale selection network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(6):1453-1467. [33] LIU M,LIU H,CHEN C. Enhanced skeleton visualization for view invariant human action recognition[J]. Pattern Recognition, 2017,68:346-362. [34] LIU J,WANG G,DUAN L,et al. Skeleton-based human action recognition with global context-aware attention LSTM networks[J]. IEEE Transactions on Image Processing,2018,27(4):1586-1599. [35] KE Q, BENNAMOUN M, AN S, et al. Learning clip representations for skeleton-based 3D action recognition[J]. IEEE Transactions on Image Processing,2018,27(6):2842-2855. [36] LIU M,YUAN J. Recognizing human actions as the evolution of pose estimation maps[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1159-1168. [37] CEATANO C,SENA J,BRÉMOND F,et al. SkeleMotion:a new representation of skeleton joint sequences based on motion information for 3D action recognition[C]//Proceedings of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway:IEEE,2019:1-8. [38] YANG Z,LI Y,YANG J,et al. Action recognition with spatiotemporal visual attention on skeleton image sequences[J]. IEEE Transactions on Circuits and Systems for Video Technology,2019, 29(8):2405-2415. [39] VEMULAPALLI R,ARRATE F,CHELLAPPA R. Human action recognition by representing 3D skeletons as points in a lie group[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:588-595. [40] ZHENG W,LI L,ZHANG Z,et al. Relational network for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE,2019:826-831. [41] LI S,LI W,COOK C,et al. Independently Recurrent Neural Network (IndRNN):building a longer and deeper RNN[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:5457-5466. [42] LI C,ZHONG Q,XIE D,et al. Skeleton-based action recognition with convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo Workshops. Piscataway:IEEE,2017:597-600. [43] LI B,DAI Y,CHENG X,et al. Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep CNN[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo Workshops. Piscataway:IEEE,2017:601-604. [44] TANG Y,TIAN Y,LU J,et al. Deep progressive reinforcement learning for skeleton-based action recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2323-5332. |