[1] 杨佳乐, 王俊豪, 钱卫宁, 等. 裁定文书中企业破产事件的自动化抽取[J]. 华东师范大学学报(自然科学版),2020(4):88-97. (YANG J L,WANG J H,QIAN W N,et al. Automatic extraction of corporate bankruptcy-related events from ruling documents[J]. Journal of East China Normal University(Natural Science),2020(4):88-97.) [2] 邱奇志, 周三三, 刘长发, 等. 基于文体和词表的突发事件信息抽取研究[J]. 中文信息学报,2018,32(9):56-65,74.(QIU Q Z,ZHOU S S,LIU C F,et al. Emergency information extraction based on style and terminology[J]. Journal of Chinese Information Processing,2018,32(9):56-65,74.) [3] 余晨, 毛喆, 高嵩. 基于规则的海事自由文本信息抽取方法研究[J]. 交通信息与安全,2017,35(2):40-47.(YU C,MAO Z, GAO S. An approach of extracting information for maritime unstructured text based on rules[J]. Journal of Transport Information and Safety,2017,35(2):40-47.) [4] 陈亚东, 洪宇, 王潇斌, 等. 利用框架语义知识优化事件抽取[J]. 中文信息学报,2017,31(2):117-125.(CHEN Y D,HONG Y,WANG X B,et al. Event extraction optimization via frame semantic knowledge[J]. Journal of Chinese Information Processing,2017,31(2):117-125.) [5] LI Q,JI H,HONG Y,et al. Constructing information networks using one single model[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2014:1846-1851. [6] YANG B,MITCHELL T M. Joint extraction of events and entities within a document context[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics,2016:289-299. [7] 吴文涛, 李培峰, 朱巧明. 基于混合神经网络的实体和事件联合抽取方法[J]. 中文信息学报,2019,33(8):77-83.(WU W T, LI P F,ZHU Q M. Joint extraction of entities and events by a hybrid neural network[J]. Journal of Chinese Information Processing,2019,33(8):77-83.) [8] 仲伟峰, 杨航, 陈玉博, 等. 基于联合标注和全局推理的篇章级事件抽取[J]. 中文信息学报,2019,33(9):88-95,106. (ZHONG W F,YANG H,CHEN Y B,et al. Document-level event extraction based on joint labeling and global reasoning[J]. Journal of Chinese Information Processing,2019,33(9):88-95,106.) [9] ZHANG Y,YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:1554-1564. [10] LIU W,XU T,XU Q,et al. An encoding strategy based wordcharacter LSTM for Chinese NER[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2019:2379-2389. [11] XUE M,YU B,LIU T,et al. Porous lattice transformer encoder for Chinese NER[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2020:3831-3841. [12] 刘炜, 刘菲京, 王东, 等. 一种基于事件本体的文本事件要素提取方法[J]. 中文信息学报,2016,30(4):167-175.(LIU W, LIU F J,WANG D,et al. A text event elements extraction method based on event ontology[J]. Journal of Chinese Information Processing,2016,30(4):167-175.) [13] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [14] HE J,WANG H. Chinese named entity recognition and word segmentation based on character[C]//Proceedings of the 6th SIGHAN Workshop on Chinese Language Processing.[S. l.]:Asian Federation of Natural Language Processing,2008:128-131. [15] CIPOLLA R,GAL Y,KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7482-7491. |