[1] DWORK C. Differential privacy:a survey of results[C]//Proceedings of the 2008 International Conference on Theory and Applications of Models of Computation, LNCS 4978. Berlin:Springer,2008:1-19. [2] SWEENY L. k-anonymity:a model for protecting privacy[J]. International Journal of Uncertainty,Fuzziness and KnowledgeBased Systems,2002,10(5):557-570. [3] KANG J,YU R,HUANG X,et al. Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2018,19(8):2627-2637. [4] SUN Y,WU L,WU S,et al. Security and privacy in the internet of vehicles[C]//Proceedings of the 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things. Piscataway:IEEE,2015:116-121. [5] KANG J,YU R,HUANG X,et al. Location privacy attacks and defenses in cloud-enabled internet of vehicles[J]. IEEE Wireless Communications,2016,23(5):52-59. [6] SUN G,SUN S,SUN J,et al. Security and privacy preservation in fog-based crowd sensing on the internet of vehicles[J]. Journal of Network and Computer Applications,2019,134:89-99. [7] JOY J,GERLA M. Internet of Vehicles and autonomous connected car-privacy and security issues[C]//Proceedings of the 26th International Conference on Computer Communication and Networks. Piscataway:IEEE,2017:1-9. [8] AMIRI M M,GÜNDÜZ D. Federated learning over wireless fading channels[J]. IEEE Transactions on Wireless Communications, 2020,19(5):3546-3557. [9] YANG Q,LIU Y,CHENG Y,et al. Federated Learning[M]. San Rafael:Morgan & Claypool Publishers,2020:1-207. [10] ZHAO Y,LI M,LAI L,et al. Federated learning with non-ⅡD data[EB/OL].[2019-06-29]. https://arxiv.org/pdf/1806.00582.pdf. [11] SAMARAKOON S,BENNIS M,SAAD W,et al. Distributed federated learning for ultra-reliable low-latency vehicular communications[J]. IEEE Transactions on Communications, 2020,68(2):1146-1159. [12] KONEČNÝ J,MCMAHAN H B,YU F X,et al. Federated learning:strategies for improving communication efficiency[EB/OL].[2019-06-29]. https://arxiv.org/pdf/1610.05492.pdf. [13] JIANG R,ZHOU S. Cluster-based cooperative digital over-the-air aggregation for wireless federated edge learning[C]//Proceedings of the 2020 IEEE/CIC International Conference on Communications in China. Piscataway:IEEE,2020:887-892 [14] SATTLER F,WIEDEMANN S,SAMEK W,et al. Robust and communication-efficient federated learning from non-i. i. d. data[J]. IEEE Transactions on Neural Networks and Learning Systems,2020, 31(9):3400-3413. [15] 牛志升, SHEN S, 张钦宇, 等. 面向沉浸式体验的空天地一体化车联网体系架构与关键技术[J]. 物联网学报, 2017, 1(2):17-27.(NIU Z S,SHEN S,ZHANG Q Y,et al. Space-air-ground integrated vehicular network for immersive driving experience[J]. Chinese Journal on Internet of Things,2017,1(2):17-27.) [16] 尉志青, 马昊, 张奇勋, 等. 感知-通信-计算融合的智能车联网挑战与趋势[J]. 中兴通讯技术, 2020, 26(1):45-49.(WEI Z Q, MA H,ZHANG Q X,et al. Challenge and trend of sensing, communication and computing integrated intelligent internet of vehicle[J]. ZTE Technology Journal,2020,26(1):45-49.) [17] 许瑞琛, 王俊峰, 张莎. LTE-V2X测试与仿真从入门到精通[M]. 北京:人民邮电出版社, 2018:127-128.(XU R C,WANG J F,ZHANG S. LTE-V2X Testing and Simulation:From Initiation to Mastery[M]. Beijing:Posts & Telecom Press, 2018:127-128.) |