| 1 | MAASS W. Networks of spiking neurons: the third generation of neural network models[J]. Neural Networks, 1997, 10(9): 1659-1671.  10.1016/s0893-6080(97)00011-7 | 
																													
																						| 2 | KNIGHT J C, NOWOTNY T. Larger GPU-accelerated brain simulations with procedural connectivity[J]. Nature Computational Science, 2021, 1(2): 136-142.  10.1038/s43588-020-00022-7 | 
																													
																						| 3 | WEIDEL P, DUARTE R, MORRISON A. Unsupervised learning and clustered connectivity enhance reinforcement learning in spiking neural networks[J]. Frontiers in Computational Neuroscience, 2021, 15: No.543872.  10.3389/fncom.2021.543872 | 
																													
																						| 4 | GEWALTIG M O, DIESMANN M. NEST (NRural Simulation Tool)[J]. Scholarpedia, 2007, 2(4): No.1430.  10.4249/scholarpedia.1430 | 
																													
																						| 5 | STIMBERG M, BRETTE R, GOODMAN D F M. Brian 2, an intuitive and efficient neural simulator[J]. eLife, 2019, 8: No.e47314.  10.7554/elife.47314 | 
																													
																						| 6 | STIMBERG M, GOODMAN D F M, NOWOTNY T. Brian2GeNN: accelerating spiking neural network simulations with graphics hardware[J]. Scientific Reports, 2020, 10(1): No.410.  10.1038/s41598-019-54957-7 | 
																													
																						| 7 | CHOU T S, KASHYAP H J, XING J W, et al. CARLsim 4: an open source library for large scale, biologically detailed spiking neural network simulation using heterogeneous clusters[C]// Proceedings of the 2018 International Joint Conference on Neural Networks. Piscataway: IEEE, 2018: 1-8.  10.1109/ijcnn.2018.8489326 | 
																													
																						| 8 | YAKOPCIC C, RAHMAN N, ATAHARY T, et al. Solving constraint satisfaction problems using the Loihi spiking neuromorphic processor[C]// Proceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition. Piscataway: IEEE, 2020: 1079-1084.  10.23919/date48585.2020.9116227 | 
																													
																						| 9 | DENG L, WANG G R, LI G Q, et al. Tianjic: a unified and scalable chip bridging spike-based and continuous neural computation[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2228-2246.  10.1109/jssc.2020.2970709 | 
																													
																						| 10 | FURBER S B, GALLUPPI F, TEMPLE S, et al. The SpiNNaker project[J]. Proceedings of the IEEE, 2014, 102(5): 652-665.  10.1109/jproc.2014.2304638 | 
																													
																						| 11 | POTJANS T C, DIESMANN M. The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model[J]. Cerebral Cortex, 2014, 24(3): 785-806.  10.1093/cercor/bhs358 | 
																													
																						| 12 | 刘俊秀,黄星月,罗玉玲,等. 脉冲神经网络硬件互连系统的动态优先级仲裁策略[J]. 电子学报, 2018, 46(8):1898-1905.  10.3969/j.issn.0372-2112.2018.08.014 | 
																													
																						|  | LIU J X, HUANG X Y, LUO Y L, et al. Dynamic priority arbitration strategy for interconnections of hardware spiking neural networks[J]. Acta Electronica Sinica, 2018, 46(8): 1898-1905.  10.3969/j.issn.0372-2112.2018.08.014 | 
																													
																						| 13 | BALAJI A, DAS A, WU Y F, et al. Mapping spiking neural networks to neuromorphic hardware[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(1): 76-86.  10.1109/tvlsi.2019.2951493 | 
																													
																						| 14 | 刘家华,陈靖宇. 多核并行脉冲神经网络模拟器的设计[J]. 计算机工程与应用, 2020, 56(22):244-250.  10.3778/j.issn.1002-8331.1908-0375 | 
																													
																						|  | LIU J H, CHEN J Y. Design of multi-core parallel spiking neural network simulator[J]. Computer Engineering and Applications, 2020, 56(22): 244-250.  10.3778/j.issn.1002-8331.1908-0375 | 
																													
																						| 15 | QU P, ZHANG Y H, FEI X, et al. High performance simulation of spiking neural network on GPGPUs[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(11): 2510-2523.  10.1109/tpds.2020.2994123 | 
																													
																						| 16 | TITIRSHA T, SONG S, BALAJI A, et al. On the role of system software in energy management of neuromorphic computing[C]// Proceedings of the 18th ACM International Conference on Computing Frontiers. New York: ACM, 2021: 124-132.  10.1145/3457388.3458664 | 
																													
																						| 17 | SONG S H, VARSHIKA M L, DAS A, et al. A design flow for mapping spiking neural networks to many-core neuromorphic hardware[C]// Proceedings of the 2021 IEEE/ACM International Conference on Computer Aided Design. Piscataway: IEEE, 2021: 1-9.  10.1109/iccad51958.2021.9643500 | 
																													
																						| 18 | KULKARNI S R, PARSA M, MITCHELL J P, et al. Benchmarking the performance of neuromorphic and spiking neural network simulators[J]. Neurocomputing, 2021, 447: 145-160.  10.1016/j.neucom.2021.03.028 | 
																													
																						| 19 | KUNKEL S, SCHENCK W. The NEST dry-run mode: efficient dynamic analysis of neuronal network simulation code[J]. Frontiers in Neuroinformatics, 2017, 11: No.40.  10.3389/fninf.2017.00040 | 
																													
																						| 20 | NGUYEN Q A P, ANDELFINGER P, TAN W J, et al. Transitioning spiking neural network simulators to heterogeneous hardware[J]. ACM Transactions on Modeling and Computer Simulation, 2021, 31(2): No.9.  10.1145/3422389 | 
																													
																						| 21 | 郁龚健,张鲁飞,李佩琦,等. SWAM: SNN工作负载自动映射器[J]. 计算机科学与探索, 2021, 15(9):1641-1657. | 
																													
																						|  | YU G J, ZHANG L F, LI P Q, et al. SWAM: workload automatic mapper for SNN[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1641-1657. | 
																													
																						| 22 | BALAJI P, BLAND W, GROPP W, et al. MPICH user’s guide version 3.1[EB/OL]. (2014-02-20) [2022-03-29].. | 
																													
																						| 23 | THAKUR R, RABENSEIFNER R, GROPP W. Optimization of collective communication operations in MPICH[J]. The International Journal of High Performance Computing Applications, 2005, 19(1): 49-66.  10.1177/1094342005051521 | 
																													
																						| 24 | CROCKETT L, NORTHCOTE D, RAMSAY C, et al. Exploring Zynq® MPSoC: with PYNQ and Machine Learning Applications[M]. Glasgow: Strathclyde Academic Media, 2019:525-562. | 
																													
																						| 25 | 张新伟,李康,郁龚健,等. 基于ZYNQ集群的神经形态计算加速研究与实现[J]. 计算机工程与应用, 2020, 56(21):65-71.  10.3778/j.issn.1002-8331.1912-0339 | 
																													
																						|  | ZHANG X W, LI K, YU G J, et al. Research and implementation of accelerating neuromorphic computing based on ZYNQ cluster[J]. Computer Engineering and Applications, 2020, 56(21): 65-71.  10.3778/j.issn.1002-8331.1912-0339 | 
																													
																						| 26 | 李佩琦,郁龚健,华夏,等. PEST:由PYNQ集群实现的高能效NEST类脑仿真器[J]. 计算机科学与探索, 2021, 15(11):2127-2141.  10.3778/j.issn.1673-9418.2011047 | 
																													
																						|  | LI P Q, YU G J, HUA X, et al. PEST: energy-efficient NEST brain-like simulator implemented by PYNQ cluster[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2127-2141.  10.3778/j.issn.1673-9418.2011047 | 
																													
																						| 27 | MORRISON A, AERTSEN A, DIESMANN M. Spike-timing-dependent plasticity in balanced random networks[J]. Neural Computation, 2007, 19(6): 1437-1467.  10.1162/neco.2007.19.6.1437 | 
																													
																						| 28 | KHERADPISHEH S R, GANJTABESH M, THORPE S J, et al. STDP-based spiking deep convolutional neural networks for object recognition[J]. Neural Networks, 2018, 99: 56-67.  10.1016/j.neunet.2017.12.005 |