| 1 | AL-HABSI Z, AL-NOUMANI H, HASHMI I AL. Determinants of health-related quality of life among Omanis hospitalized patients with cancer: a cross-sectional study[J]. Quality of Life Research, 2022, 31(7): 2061-2070.  10.1007/s11136-021-03061-3 | 
																													
																						| 2 | HU W M, LI C, LI X Y, et al. GasHisSDB: a new gastric histopathology image dataset for computer aided diagnosis of gastric cancer[J]. Computers in Biology and Medicine, 2022, 142: No.105207.  10.1016/j.compbiomed.2021.105207 | 
																													
																						| 3 | JAVED S, MAHMOOD A, DIAS J, et al. Multi-level feature fusion for nucleus detection in histology images using correlation filters[J]. Computers in Biology and Medicine, 2022, 143: No.105281.  10.1016/j.compbiomed.2022.105281 | 
																													
																						| 4 | KUMAR N, VERMA R, ANAND D, et al. A multi-organ nucleus segmentation challenge[J]. IEEE Transactions on Medical Imaging, 2020, 39(5): 1380-1391. | 
																													
																						| 5 | KUMAR N, VERMA R, SHARMA S, et al. A dataset and a technique for generalized nuclear segmentation for computational pathology[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1550-1560.  10.1109/tmi.2017.2677499 | 
																													
																						| 6 | 吴崇数,林霖,薛蕴菁,等. 基于自监督学习的病理图像层次分割[J]. 计算机应用, 2020, 40(6):1856-1862.  10.11772/j.issn.1001-9081.2019101863 | 
																													
																						|  | WU C S, LIN L, XUE Y J, et al. Hierarchical segmentation of pathological images based on self-supervised learning[J]. Journal of Computer Applications, 2020, 40(6): 1856-1862.  10.11772/j.issn.1001-9081.2019101863 | 
																													
																						| 7 | 林天予,宋亮,高智凡,等. 基于深度学习的二维心脏超声图像分割模型在小规模数据集上的性能评估[J]. 暨南大学学报(自然科学与医学版), 2022, 43(2):191-198. | 
																													
																						|  | LIN T Y, SONG L, GAO Z F, et al. Evaluation of a deep learning-based model for 2-D echocardiography segmentation on small datasets[J]. Journal of Jinan University (Natural Science and Medicine Edition), 2022, 43(2): 191-198. | 
																													
																						| 8 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.  10.1109/cvpr.2015.7298965 | 
																													
																						| 9 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
																													
																						| 10 | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.  10.1109/tmi.2019.2959609 | 
																													
																						| 11 | QIN J, HE Y J, ZHOU Y, et al. REU-Net: region-enhanced nuclei segmentation network[J]. Computers in Biology and Medicine, 2022, 146: No.105546.  10.1016/j.compbiomed.2022.105546 | 
																													
																						| 12 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186.  10.18653/v1/n18-2 | 
																													
																						| 13 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03) [2022-02-23].. | 
																													
																						| 14 | WANG H Y, ZHU Y K, GREEN B, et al. Axial-DeepLab: stand-alone axial-attention for panoptic segmentation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12349. Cham: Springer, 2020: 108-126.  10.1007/978-3-030-58548-8_7 | 
																													
																						| 15 | HO J, KALCHBRENNER N, WEISSENBORN D, et al. Axial attention in multidimensional transformers[EB/OL]. (2019-12-20) [2022-02-23].. | 
																													
																						| 16 | ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6877-6886.  10.1109/cvpr46437.2021.00681 | 
																													
																						| 17 | ZHANG Y L, HIGASHITA R, FU H Z, et al. A multi-branch hybrid transformer network for corneal endothelial cell segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 99-108. | 
																													
																						| 18 | CHEN J N, LU Y Y, YU Q H, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. (2021-02-08) [2022-02-23].. | 
																													
																						| 19 | VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 36-46. | 
																													
																						| 20 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.  10.1109/iccv48922.2021.00986 | 
																													
																						| 21 | CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[EB/OL]. (2021-05-12) [2022-02-23]..  10.1007/978-3-031-25066-8_9 | 
																													
																						| 22 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. | 
																													
																						| 23 | ZHANG Y D, LIU H Y, HU Q. TransFuse: fusing Transformers and CNNs for medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 14-24. | 
																													
																						| 24 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.  10.1109/cvpr.2016.90 | 
																													
																						| 25 | VEIT A, WILBER M J, BELONGIE S. Residual networks behave like ensembles of relatively shallow networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 550-558. | 
																													
																						| 26 | 罗恺锴,王婷,叶芳芳,等. 引入注意力机制和多视角融合的脑肿瘤MR图像U-Net分割模型[J]. 中国图象图形学报, 2021, 26(9):2208-2218.  10.11834/jig.200584 | 
																													
																						|  | LUO K K, WANG T, YE F F, et al. U-Net segmentation model of brain tumor MR image based on attention mechanism and multi-view fusion[J]. Journal of Image and Graphics, 2021, 26(9):2208-2218.  10.11834/jig.200584 | 
																													
																						| 27 | OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. (2018-05-20) [2022-02-23].. | 
																													
																						| 28 | WANG H N, CAO P, WANG J Q, et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with transformer[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 2441-2449.  10.1609/aaai.v36i3.20144 | 
																													
																						| 29 | WU C S, ZHONG J, LIN L, et al. Segmentation of HE-stained meningioma pathological images based on pseudo-labels[J]. PLoS ONE, 2022, 17(2): No.e0263006.  10.1371/journal.pone.0263006 |