| 1 | INCE D C. The automatic generation of test data[J]. The Computer Journal, 1987, 30(1): 63-69.  10.1093/comjnl/30.1.63 | 
																													
																						| 2 | GONG D W, TIAN T, WANG J X, et al. A novel method of grouping target paths for parallel programs[J]. Parallel Computing, 2020, 97: No.102665.  10.1016/j.parco.2020.102665 | 
																													
																						| 3 | NOSRATI M, HAGHIGHI H, VAHIDI-ASL M. Using likely invariants for test data generation[J]. Journal of Systems and Software, 2020, 164: No.110549.  10.1016/j.jss.2020.110549 | 
																													
																						| 4 | MALHOTRA R, GARG M. An adequacy based test data generation technique using genetic algorithms[J]. Journal of Information Processing Systems, 2011, 7(2):363-384.  10.3745/jips.2011.7.2.363 | 
																													
																						| 5 | 张岩,巩敦卫. 基于稀有数据扑捉的路径覆盖测试数据进化生成方法[J]. 计算机学报, 2013, 36(12):2429-2440.  10.3724/sp.j.1016.2013.02429 | 
																													
																						|  | ZHANG Y, GONG D W. Evolutionary generation of test data for paths coverage based on scarce data capturing[J]. Chinese Journal of Computers, 2013, 36(12):2429-2440.  10.3724/sp.j.1016.2013.02429 | 
																													
																						| 6 | ANDALIB A, BABAMIR S M. A new approach for test case generation by discrete particle swarm optimization algorithm[C]// Proceedings of the 22nd Iranian Conference on Electrical Engineering. Piscataway: IEEE, 2015:1180-1185.  10.1109/iraniancee.2014.6999714 | 
																													
																						| 7 | 李龙澍,郭紫梦. 应用混沌果蝇算法的路径覆盖测试用例优化技术研究[J]. 小型微型计算机系统, 2018, 39(2):362-366.  10.3969/j.issn.1000-1220.2018.02.032 | 
																													
																						|  | LI L S, GUO Z M. Optimization techniques research on testing data through path coverage with chaotic fruit fly algorithm[J]. Journal of Chinese Computer Systems, 2018, 39(2):362-366.  10.3969/j.issn.1000-1220.2018.02.032 | 
																													
																						| 8 | LAKSHMINARAYANA P, SureshKUMAR T V. Automatic generation and optimization of test case using hybrid cuckoo search and bee colony algorithm[J]. Journal of Intelligent Systems, 2021, 30(1): 59-72.  10.1515/jisys-2019-0051 | 
																													
																						| 9 | TRACEY N, CLARK J, MANDER K, et al. An automated framework for structural test-data generation[C]// Proceedings 13th IEEE International Conference on Automated Software Engineering. Piscataway: IEEE, 1998: 285-288. | 
																													
																						| 10 | ARCURI A. It does matter how you normalise the branch distance in search based software testing[C]// Proceedings of the 3rd International Conference on Software Testing, Verification and Validation. Piscataway: IEEE, 2010: 205-214.  10.1109/icst.2010.17 | 
																													
																						| 11 | CAI G C, SU Q H, HU Z B. Automated test case generation for path coverage by using grey prediction evolution algorithm with im-proved scatter search strategy[J]. Engineering Applications of Artificial Intelligence, 2021, 106: No.104454.  10.1016/j.engappai.2021.104454 | 
																													
																						| 12 | CAI G C, SU Q H, HU Z B. Binary searching iterative algorithm for generating test cases to cover paths[J]. Applied Soft Computing, 2021, 113(Pt A): No.107910.  10.1016/j.asoc.2021.107910 | 
																													
																						| 13 | GUPTA A, ONG Y S, FENG L. Multifactorial evolution: toward evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 343-357.  10.1109/tevc.2015.2458037 | 
																													
																						| 14 | SAHOO R R, RAY M. PSO based test case generation for critical path using improved combined fitness function[J]. Journal of King Saud University - Computer and Information Sciences, 2020, 32(4): 479-490.  10.1016/j.jksuci.2019.09.010 | 
																													
																						| 15 | CIVICIOGLU P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and Computation, 2013, 219(15):8121-8144.  10.1016/j.amc.2013.02.017 | 
																													
																						| 16 | MA X L, YIN J, ZHU A M, et al. Enhanced multifactorial evolutionary algorithm with meme helper-tasks[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7837-7851.  10.1109/tcyb.2021.3050516 | 
																													
																						| 17 | LIU F Q, HUANG H, YANG Z M, et al. Search-based algorithm with scatter search strategy for automated test case generation of NLP toolkit[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5(3): 491-503.  10.1109/tetci.2019.2914280 | 
																													
																						| 18 | HUANG H, LIU F Q, YANG Z M, et al. Automated test case generation based on differential evolution with relationship matrix for iFogSim toolkit[J]. IEEE Transactions on Industrial Informatics, 2018, 14(11): 5005-5016.  10.1109/tii.2018.2856881 | 
																													
																						| 19 | BOUCHACHIA A. An immune genetic algorithm for software test data generation[C]// Proceedings of the 7th International Conference on Hybrid Intelligent Systems. Piscataway: IEEE, 2007: 84-89.  10.1109/his.2007.37 | 
																													
																						| 20 | HUANG H, LV L, YE S J, et al. Particle swarm optimization with convergence speed controller for large-scale numerical optimization[J]. Soft Computing, 2019, 23(12): 4421-4437.  10.1007/s00500-018-3098-9 | 
																													
																						| 21 | SU Q H, CAI G C, HU Z B, et al. Test case generation using improved differential evolution algorithms with novel hypercube-based learning strategies[J]. Engineering Applications of Artificial Intelligence, 2022, 112: No.104840.  10.1016/j.engappai.2022.104840 |