| 1 | 闫蓉,高光来. 基于检索结果排序的伪相关反馈[J]. 计算机应用, 2016, 36(8): 2099-2102, 2143.  10.11772/j.issn.1001-9081.2016.08.2099 | 
																													
																						|  | YAN R, GAO G L. Pseudo relevance feedback based on sorted retrieval result[J]. Journal of Computer Applications, 2016, 36(8): 2099-2102, 2143.  10.11772/j.issn.1001-9081.2016.08.2099 | 
																													
																						| 2 | 闫蓉,高光来. 基于伪文档的伪相关反馈方法[J]. 中文信息学报, 2016, 30(6): 156-163, 172.  10.11772/j.issn.1001-9081.2016.08.2099 | 
																													
																						|  | YAN R, GAO G L. A new pseudo relevance feedback based on pseudo document[J]. Journal of Chinese Information Processing, 2016, 30(6): 156-163, 172.  10.11772/j.issn.1001-9081.2016.08.2099 | 
																													
																						| 3 | ROCCHIO J. Relevance feedback in information retrieval[M]// SALTON G. The SMART Retrieval System: Experiments in Automatic Document Processing. Upper Saddle River, NJ: Prentice Hall, 1971: 313-323. | 
																													
																						| 4 | ABDUL-JALEEL N, ALLAN J, CROFT W B, et al. UMass at TREC 2004: novelty and HARD[C/OL]// Proceedings of the 13th Text REtrieval Conference [2022-02-11]..  10.21236/ada460118 | 
																													
																						| 5 | ZHAI C X, LAFFERTY J. Model-based feedback in the language modeling approach to information retrieval[C]// Proceedings of the 10th ACM International Conference on Information and Knowledge Management. New York: ACM, 2001: 403-410.  10.1145/502585.502654 | 
																													
																						| 6 | AMATI G, C J van RIJSBERGEN. Probabilistic models of information retrieval based on measuring the divergence from randomness[J]. ACM Transactions on Information Systems, 2002, 20(4): 357-389.  10.1145/582415.582416 | 
																													
																						| 7 | DIAZ F, MITRA B, CRASWELL N. Query expansion with locally-trained word embeddings[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2016: 367-377.  10.18653/v1/p16-1035 | 
																													
																						| 8 | ROY D, GANGULY D, BHATIA S, et al. Using word embeddings for information retrieval: how collection and term normalization choices affect performance[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 1835-1838.  10.1145/3269206.3269277 | 
																													
																						| 9 | 黄名选. 关联模式挖掘与词向量学习融合的伪相关反馈查询扩展[J]. 电子学报, 2021, 49(7): 1305-1313.  10.12263/DZXB.20200654 | 
																													
																						|  | HUANG M X. Pseudo-relevance feedback query expansion based on the fusion of association pattern mining and word embedding learning[J]. Acta Electronica Sinica, 2021, 49(7): 1305-1313.  10.12263/DZXB.20200654 | 
																													
																						| 10 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186.  10.18653/v1/n18-2 | 
																													
																						| 11 | LIN J, NOGUEIRA R, YATES A. Pretrained transformers for text ranking: BERT and beyond[J]. Synthesis Lectures on Human Language Technologies, 2021, 14(4): 18-20.  10.2200/s01123ed1v01y202108hlt053 | 
																													
																						| 12 | YU H C, XIONG C Y, CALLAN J. Improving query representations for dense retrieval with pseudo relevance feedback[C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 3592-3596.  10.1145/3459637.3482124 | 
																													
																						| 13 | XIONG L, XIONG C Y, LI Y, et al. Approximate nearest neighbor negative contrastive learning for dense text retrieval[EB/OL]. (2023-01-24) [2023-02-12].. | 
																													
																						| 14 | WANG X, MACDONALD C, TONELLOTTO N, et al. Pseudo-relevance feedback for multiple representation dense retrieval[C]// Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval. New York: ACM, 2021: 297-306.  10.1145/3471158.3472250 | 
																													
																						| 15 | KHATTAB O, ZAHARIA M. ColBERT: efficient and effective passage search via contextualized late interaction over BERT[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 39-48.  10.1145/3397271.3401075 | 
																													
																						| 16 | QIU X P, SUN T X, XU Y G, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63(10): 1872-1897.  10.1007/s11431-020-1647-3 | 
																													
																						| 17 | NOGUEIRA R, CHO K. Passage re-ranking with BERT[EB/OL]. (2020-04-14) [2022-03-12].. | 
																													
																						| 18 | ROBERTSON S E, WALKER S, BEAULIEU M M, et al. Okapi at TREC-4[C/OL]// Proceedings of the 4th Text REtrieval Conference [2022-03-11] .  10.1108/eum0000000007188 | 
																													
																						| 19 | AKKALYONCU YILMAZ Z, YANG W, ZHANG H T, et al. Cross-domain modeling of sentence-level evidence for document retrieval[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 3490-3496.  10.18653/v1/d19-1352 | 
																													
																						| 20 | MacAVANEY S, YATES A, COHAN A, et al. CEDR: contextualized embeddings for document ranking[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 1101-1104.  10.1145/3331184.3331317 | 
																													
																						| 21 | LI C J, YATES A, MacAVANEY S, et al. PARADE: passage representation aggregation for document reranking[EB/OL]. (2021-07-10) [2022-03-12].. | 
																													
																						| 22 | KARPUKHIN V, OGUZ B, MIN S, et al. Dense passage retrieval for open-domain question answering[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 6769-6781.  10.18653/v1/2020.emnlp-main.550 | 
																													
																						| 23 | ZHAN J T, MAO J X, LIU Y Q, et al. RepBERT: contextualized text embeddings for first-stage retrieval[EB/OL]. (2020-07-20) [2022-03-12].. | 
																													
																						| 24 | DAI Z, CALLAN J. Context-aware document term weighting for ad-hoc search[C]// Proceedings of The Web Conference 2020. New York: ACM, 2020: 1897-1907.  10.1145/3366423.3380258 | 
																													
																						| 25 | NOGUEIRA R, YANG W, LIN J, et al. Document expansion by query prediction[EB/OL]. (2019-09-25) [2022-03-12].. | 
																													
																						| 26 | NOGUEIRA R, LIN J, EPISTEMIC A I. From doc2query to docTTTTTquery[EB/OL]. [2022-03-12].. | 
																													
																						| 27 | LI C J, SUN Y F, HE B, et al. NPRF: a neural pseudo relevance feedback framework for ad-hoc information retrieval[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 4482-4491.  10.18653/v1/d18-1478 | 
																													
																						| 28 | ZHENG Z, HUI K, HE B, et al. BERT-QE: contextualized query expansion for document re-ranking[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, PA: ACL, 2020: 4718-4728.  10.18653/v1/2020.findings-emnlp.424 | 
																													
																						| 29 | VOORHEES E M. Overview of the TREC 2004 Robust Track. [C]// Proceedings of the 13th Text REetrieval Conference: TREC 2004. Gaithersburg, Maryland: National Institute of Standards and Technology, 2004: 52-69.  10.6028/nist.sp.500-261 | 
																													
																						| 30 | HAWKING D, VOORHEES E, CRASWELL N, et al. Overview of the TREC-8 Web track[C]// Proceedings of the 8th Text Retrieval Conference: TREC 1999. Gaithersburg, Maryland: National Institute of Standards and Technology, 1999: 131-150.  10.6028/nist.sp.500-242 | 
																													
																						| 31 | YANG P L, FANG H, LIN J. Anserini: enabling the use of Lucene for information retrieval research[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 1253-1256.  10.1145/3077136.3080721 |