| 1 | DREZNER T, DREZNER Z, SUZUKI A. A cover based competitive facility location model with continuous demand[J]. Naval Research Logistics, 2019, 66(7): 565-581.  10.1002/nav.21868 | 
																													
																						| 2 | ESMAEILI M, HAMEDANI S G. A competitive facility location problem using distributor Stackelberg game approach in multiple three-level supply chains[J]. International Journal of Applied Management Science, 2022, 14(3): 205-220.  10.1504/ijams.2022.10050104 | 
																													
																						| 3 | YU W. Robust competitive facility location model with uncertain demand types[J]. PLoS ONE, 2022, 17(8): No.e0273123.  10.1371/journal.pone.0273123 | 
																													
																						| 4 | MAI T, LODI A. A multicut outer-approximation approach for competitive facility location under random utilities[J]. European Journal of Operational Research, 2020, 284(3):874-881.  10.1016/j.ejor.2020.01.020 | 
																													
																						| 5 | LIN Y H, TIAN Q. Exact approaches for competitive facility location with discrete attractiveness[J]. Optimization Letters, 2021, 15(2): 377-389.  10.1007/s11590-020-01596-x | 
																													
																						| 6 | 刘伟伟,王明征,胡祥培. 考虑碳排放的多产品竞争设施选址问题研究[J]. 系统工程学报, 2022, 37(2):275-288. | 
																													
																						|  | LIU W W, WANG M Z, HU X P. Research on multi-commodity competitive facility location problem with carbon emission[J]. Journal of Systems Engineering, 2022, 37(2): 275-288. | 
																													
																						| 7 | FERNÁNDEZ P, LANČINSKAS A, PELEGRÍN B, et al. A discrete competitive facility location model with minimal market share constraints and equity-based ties breaking rule[J]. Informatica, 2020, 31(2): 205-224.  10.15388/20-INFOR410 | 
																													
																						| 8 | SHAN W, YAN Q, CHEN C, et al. Optimization of competitive facility location for chain stores[J]. Annals of Operations Research, 2019, 273(1/2): 187-205.  10.1007/s10479-017-2579-z | 
																													
																						| 9 | ZARRINPOOR N. An exploration of evolutionary algorithms for a bi-objective competitive facility location problem in congested systems[J]. International Journal of Supply and Operations Management, 2018, 5(3): 266-282.  10.22034/2018.3.6: | 
																													
																						| 10 | 何怀文,傅瑜,杨毅红,等. 基于M/M/n/n+r排队模型的云计算中心服务性能分析[J]. 计算机应用, 2014, 34(7):1843-1847.  10.11772/j.issn.1001-9081.2014.07.1843 | 
																													
																						|  | HE H W, FU Y, YANG Y H, et al. Service performance analysis of cloud computing center based on M/M/n/n+r queuing model[J]. Journal of Computer Applications, 2014, 34(7): 1843-1847.  10.11772/j.issn.1001-9081.2014.07.1843 | 
																													
																						| 11 | 李磊,张曙阳,李彤. 基于嵌套Logit模型的竞争性选址问题研究[J].系统工程学报, 2021, 36(4):524-538. | 
																													
																						|  | LI L, ZHANG S Y, LI T. A new competitive facility location model based on nested Logit model[J]. Journal of Systems Engineering, 2021, 36(4): 524-538. | 
																													
																						| 12 | 朱华桂. 基于持续运营机会约束的竞争设施点选址研究——一种有效的实数编码遗传求解算法[J]. 中国管理科学, 2016, 24(12):158-165.  10.16381/j.cnki.issn1003-207x.2016.12.018 | 
																													
																						|  | ZHU H G. Research on competitive facility location under the operation-sustainable chance constraint — an efficient real coded genetic algorithm[J]. Chinese Journal of Management Science, 2016, 24(12): 158-165.  10.16381/j.cnki.issn1003-207x.2016.12.018 | 
																													
																						| 13 | WANG L, NI H, YANG R, et al. A simple human learning optimization algorithm[C]// Proceedings of the 2014 International Conference on Intelligent Computing for Sustainable Energy and Environment/ International Conference on Life System Modeling and Simulation, CCIS 462. Berlin: Springer, 2014: 56-65. | 
																													
																						| 14 | RAJPUROHIT J. A modified jellyfish search optimizer with opposition based learning and biased passive swarm motion[J]. Ingénierie des Systèmes d’Information, 2021, 26(6): 577-584.  10.18280/isi.260608 | 
																													
																						| 15 | 孟晗,马良,刘勇. 融合学习心理学的人类学习优化算法[J]. 计算机应用, 2022, 42(5):1367-1374.  10.11772/j.issn.1001-9081.2021030505 | 
																													
																						|  | MENG H, MA L, LIU Y. Human learning optimization algorithm based on learning psychology[J]. Journal of Computer Applications, 2022, 42(5): 1367-1374.  10.11772/j.issn.1001-9081.2021030505 | 
																													
																						| 16 | WANG L, PEI J, WEN Y, et al. An improved adaptive human learning algorithm for engineering optimization[J]. Applied Soft Computing Journal, 2018, 71: 894-904.  10.1016/j.asoc.2018.07.051 | 
																													
																						| 17 | WANG L, AN L, PI J, et al. A diverse human learning optimization algorithm[J]. Journal of Global Optimization, 2017, 67(1/2): 283-323.  10.1007/s10898-016-0444-2 | 
																													
																						| 18 | 徐航,张达敏,王依柔,等. 基于改进二进制灰狼算法的频谱分配[J]. 计算机工程与设计, 2021, 42(5):1353-1359.  10.16208/j.issn1000-7024.2021.05.022 | 
																													
																						|  | XU H, ZHANG D M, WANG Y R, et al. Spectrum allocation based on improved binary grey wolf optimizer[J]. Computer Engineering and Design, 2021, 42(5): 1353-1359.  10.16208/j.issn1000-7024.2021.05.022 | 
																													
																						| 19 | 张丽,刘青雷,张宏伟. 基于改进二进制粒子群算法的家庭负荷优化调度策略[J]. 中国电力, 2023, 56(5):118-128. | 
																													
																						|  | ZHANG L, LIU Q L, ZHANG H W. Home load optimization scheduling strategy based on improved binary particle swarm optimization algorithm[J]. Electric Power, 2023, 56(5):118-128. | 
																													
																						| 20 | WEI Q, ZHANG M, ZHANG Y, et al. Research on the location of waste battery recycling center for new energy vehicles based on a heuristic algorithm of greedy take-off[J]. Journal of Physics: Conference Series, 2020, 1570: No.012019.  10.1088/1742-6596/1570/1/012019 | 
																													
																						| 21 | MAJLESINASAB N, MALEKI M, NIKBAKHSH E. Performance evaluation of an EMS system using queuing theory and location analysis: a case study[J]. The American Journal of Emergency Medicine, 2022, 51: 32-45.  10.1016/j.ajem.2021.10.004 | 
																													
																						| 22 | WANG L, NI H, YANG R, et al. An adaptive simplified human learning optimization algorithm[J]. Information Sciences, 2015, 320: 126-139.  10.1016/j.ins.2015.05.022 |