《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (5): 1520-1526.DOI: 10.11772/j.issn.1001-9081.2023050911
所属专题: 第十九届中国机器学习会议(CCML 2023)
• 第十九届中国机器学习会议(CCML 2023) • 上一篇 下一篇
收稿日期:
2023-07-11
修回日期:
2023-08-15
接受日期:
2023-08-21
发布日期:
2023-08-24
出版日期:
2024-05-10
通讯作者:
封筠
作者简介:
毕健康(1996—),男,河北沧州人,硕士,主要研究方向:图像分割、深度学习基金资助:
Jun FENG(), Jiankang BI, Yiru HUO, Jiakuan LI
Received:
2023-07-11
Revised:
2023-08-15
Accepted:
2023-08-21
Online:
2023-08-24
Published:
2024-05-10
Contact:
Jun FENG
About author:
BI Jiankang, born in 1996, M. S. His research interests include image segmentation, deep learning.Supported by:
摘要:
裂缝分割是对路面病害损坏程度评估的重要前提,为平衡深度神经网络分割的有效性与实时性,提出一种基于U?Net编码-解码结构的轻量化沥青路面裂缝图像分割网络PIPNet(Parallel dilated convolution of Inverted Pyramid Network)。编码部分为倒金字塔结构,提出了具有不同空洞率的多分支并行空洞卷积模块,结合深度可分离卷积和普通卷积,逐级减少并行卷积的个数,对表层、中层及底层特征提取多尺度信息并降低模型复杂度;同时借鉴GhostNet特点,设计了逆残差轻量化模块,嵌入并行双池化注意力。在GAPs384数据集上的测试结果表明,PIPNet在参数量(Params)和计算量(MFLOPs)仅为ResNet50编码近1/6的情况下,平均交并比(mIoU)提高了1.10个百分点,且较轻量化GhostNet和SegNet分别高出4.14与9.95个百分点。实验结果表明,PIPNet在降低模型复杂度的同时,有着较好的裂缝分割性能,且对不同路面裂缝图像分割适应性良好。
中图分类号:
封筠, 毕健康, 霍一儒, 李家宽. 轻量化沥青路面裂缝图像分割网络PIPNet[J]. 计算机应用, 2024, 44(5): 1520-1526.
Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network[J]. Journal of Computer Applications, 2024, 44(5): 1520-1526.
编码网络类型 | 特征网络 | mIoU/% | P/% | R/% | F1/% | MFLOPs | Params/106 |
---|---|---|---|---|---|---|---|
经典卷积网络 | 原始U‑Net[ | 22.22 | 61.77 | 25.07 | 32.35 | 62.12 | 118.48 |
VGG16[ | 26.49 | 65.50 | 32.14 | 39.06 | |||
ResNet50[ | 62.74 | 119.67 | |||||
轻量化网络 | MobileNetV2[ | 26.55 | 63.06 | 31.55 | 38.86 | 10.32 | 19.62 |
ShuffleNetV2[ | 24.73 | 69.40 | 28.61 | 36.90 | 11.82 | 22.55 | |
EfficientNetB0[ | 27.70 | 69.94 | 32.31 | 40.90 | 11.68 | 22.25 | |
MnasNet[ | 24.35 | 69.09 | 27.10 | 36.67 | 15.92 | 30.40 | |
GhostNet[ | 27.93 | 33.35 | 41.24 | ||||
PIPNet | 69.04 | 10.32 | 19.59 |
表1 不同特征编码网络在GAPs384数据集上的测试结果对比
Tab. 1 Test result comparison of different feature encoding networks on GAPs384 dataset
编码网络类型 | 特征网络 | mIoU/% | P/% | R/% | F1/% | MFLOPs | Params/106 |
---|---|---|---|---|---|---|---|
经典卷积网络 | 原始U‑Net[ | 22.22 | 61.77 | 25.07 | 32.35 | 62.12 | 118.48 |
VGG16[ | 26.49 | 65.50 | 32.14 | 39.06 | |||
ResNet50[ | 62.74 | 119.67 | |||||
轻量化网络 | MobileNetV2[ | 26.55 | 63.06 | 31.55 | 38.86 | 10.32 | 19.62 |
ShuffleNetV2[ | 24.73 | 69.40 | 28.61 | 36.90 | 11.82 | 22.55 | |
EfficientNetB0[ | 27.70 | 69.94 | 32.31 | 40.90 | 11.68 | 22.25 | |
MnasNet[ | 24.35 | 69.09 | 27.10 | 36.67 | 15.92 | 30.40 | |
GhostNet[ | 27.93 | 33.35 | 41.24 | ||||
PIPNet | 69.04 | 10.32 | 19.59 |
方法 | mIoU/% | P/% | R/% | F1/% | MFLOPs | Params/106 |
---|---|---|---|---|---|---|
PspNet[ | 27.37 | 56.70 | 34.28 | 39.03 | 93.58 | 178.39 |
SegNet[ | 22.12 | 65.08 | 26.23 | 34.19 | 21.12 | 40.27 |
AcNet[ | 26.77 | 30.90 | 38.15 | 62.48 | 120.57 | |
SegFormer[ | 68.81 | 33.56 | 64.10 | |||
PIPNet | 32.07 | 69.04 | 36.19 | 43.68 |
表2 GAPs384数据集上各对比方法的测试结果
Tab. 2 Test results for each comparison method on GAPs384 dataset
方法 | mIoU/% | P/% | R/% | F1/% | MFLOPs | Params/106 |
---|---|---|---|---|---|---|
PspNet[ | 27.37 | 56.70 | 34.28 | 39.03 | 93.58 | 178.39 |
SegNet[ | 22.12 | 65.08 | 26.23 | 34.19 | 21.12 | 40.27 |
AcNet[ | 26.77 | 30.90 | 38.15 | 62.48 | 120.57 | |
SegFormer[ | 68.81 | 33.56 | 64.10 | |||
PIPNet | 32.07 | 69.04 | 36.19 | 43.68 |
注意力 模块 | mIoU/% | P/% | R/% | F1/% | MFLOPs | Params/106 |
---|---|---|---|---|---|---|
无注意力 | 28.53 | 34.53 | 41.71 | |||
SE[ | 29.46 | 69.11 | 35.62 | 42.91 | 10.35 | 19.67 |
ECA[ | 31.82 | 68.83 | 10.32 | 19.59 | ||
PDA-GMP | 30.04 | 68.75 | 37.28 | 44.39 | 10.31 | 19.59 |
PDA | 69.04 | 36.19 | 43.68 | 10.32 | 19.59 |
表3 GAPs384数据集上PIPNet使用不同注意力的测试结果对比
Tab. 3 Test result comparison of PIPNet with different attention on GAPs384 dataset
注意力 模块 | mIoU/% | P/% | R/% | F1/% | MFLOPs | Params/106 |
---|---|---|---|---|---|---|
无注意力 | 28.53 | 34.53 | 41.71 | |||
SE[ | 29.46 | 69.11 | 35.62 | 42.91 | 10.35 | 19.67 |
ECA[ | 31.82 | 68.83 | 10.32 | 19.59 | ||
PDA-GMP | 30.04 | 68.75 | 37.28 | 44.39 | 10.31 | 19.59 |
PDA | 69.04 | 36.19 | 43.68 | 10.32 | 19.59 |
空洞率 | mIoU/% | P /% | R/% | F1/% | MFLOPs | Params/106 |
---|---|---|---|---|---|---|
1,3,5,7 | 36.19 | 43.68 | 10.32 | 19.59 | ||
1,3,5 | 30.70 | 64.33 | 38.00 | 44.56 | 5.11 | 9.67 |
1,3 | 30.91 | 38.56 |
表4 GAPs384数据集上PIPNet使用不同空洞率的测试结果对比
Tab. 4 Test results comparison of PIPNet under different dilation rates on GAPs384 dataset
空洞率 | mIoU/% | P /% | R/% | F1/% | MFLOPs | Params/106 |
---|---|---|---|---|---|---|
1,3,5,7 | 36.19 | 43.68 | 10.32 | 19.59 | ||
1,3,5 | 30.70 | 64.33 | 38.00 | 44.56 | 5.11 | 9.67 |
1,3 | 30.91 | 38.56 |
1 | 沙爱民,童峥,高杰.基于卷积神经网络的路表病害识别与测量[J].中国公路学报,2018,31(1):1-10. 10.3969/j.issn.1001-7372.2018.01.001 |
SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. 10.3969/j.issn.1001-7372.2018.01.001 | |
2 | 郝巨鸣,杨景玉,韩淑梅,等.引入Ghost模块和ECA的YOLOv4公路路面裂缝检测方法[J].计算机应用,2023,43(4):1284-1290. 10.11772/j.issn.1001-9081.2022030410 |
HAO J M, YANG J Y, HAN S M, et al. YOLOv4 highway pavement crack detection method using Ghost module and ECA[J]. Journal of Computer Applications, 2023, 43(4): 1284-1290. 10.11772/j.issn.1001-9081.2022030410 | |
3 | 蔡逢煌,张岳鑫,黄捷.基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J].模式识别与人工智能,2020,33(10):926-933. 10.16451/j.cnki.issn1003-6059.202010007 |
CAI F H, ZHANG Y X, HUANG J. Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10): 926-933. 10.16451/j.cnki.issn1003-6059.202010007 | |
4 | EISENBACH M, STRICKER R, SEICHTER D, et al. How to get pavement distress detection ready for deep learning? A systematic approach[C]// Proceedings of 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 2039-2047. 10.1109/ijcnn.2017.7966101 |
5 | 封筠,赵颖,毕健康,等.多级卷积神经网络的沥青路面裂缝图像层次化筛选[J].图学学报,2021,42(5):719-728. 10.11996/JG.j.2095-302X.2021050719 |
FENG J, ZHAO Y, BI J K, et al. Multi-level convolutional neural network for asphalt pavement crack image hierarchical filtering[J]. Journal of Graphics, 2021, 42(5): 719-728. 10.11996/JG.j.2095-302X.2021050719 | |
6 | 张德津,李清泉,陈颖,等.基于空间聚集特征的沥青路面裂缝检测方法[J].自动化学报,2016,42(3):443-454. |
ZHANG D J, LI Q Q, CHEN Y, et al. Asphalt pavement crack detection based on spatial clustering feature[J]. Acta Automatica Sinica, 2016, 42(3): 443-454. | |
7 | RONNEBERGER O, FISCHER P, BROX T. U‑Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. 10.1007/978-3-319-24574-4_28 |
8 | LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 404-419. 10.1007/978-3-030-01252-6_24 |
9 | HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1580-1589. 10.1109/cvpr42600.2020.00165 |
10 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
11 | WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11534-11542. 10.1109/cvpr42600.2020.01155 |
12 | ZOU Q, CAO Y, LI Q, et al. CrackTree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238. 10.1016/j.patrec.2011.11.004 |
13 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognitions[C]// Proceedings of the 3rd International Conference on Learning Representations. [S.l.]: Computational and Biological Learning Society, 2015: 1-14. |
14 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
15 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetB2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. 10.1109/cvpr.2018.00474 |
16 | MA N, ZHANG X, ZHENG H-T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 122-138. 10.1007/978-3-030-01264-9_8 |
17 | TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[J]. Proceedings of International Conference on Machine Learning, 2019, 97: 6105-6114. |
18 | TAN M, CHEN B, PANG R, et al. MnasNet: platform-aware neural architecture search for mobile[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2820-2828. 10.1109/cvpr.2019.00293 |
19 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2881-2890. 10.1109/cvpr.2017.660 |
20 | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. 10.1109/tpami.2016.2644615 |
21 | DING X, GUO Y, DING G, et al. AcNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1911-1920. 10.1109/iccv.2019.00200 |
22 | XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090. |
[1] | 闫文杰, 党东月. 基于特征自适应提取的宽度量子态层析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3861-3866. |
[2] | 王一帆, 林绍福, 李云江. 基于区块链和零知识证明的高速公路自由流收费方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3741-3750. |
[3] | 何长久, 杨婧涵, 周丕宇, 边昕烨, 吕明明, 董迪, 付岩, 王海鹏. 基于Transformer和门控循环单元的肽序列理论串联质谱图预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3958-3964. |
[4] | 刘哲旭 张澳冰 樊智勇. 飞机狭小空间虚拟维修姿态分层求解方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[5] | 苗荣华 孙奕程 王森 武燕婷 杜明 鲍劲松. DTOps:数字孪生系统开发运维一体化方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[6] | 王中钰, 钱晓东. 基于改进期望最大化算法的供应链网络边连接规则优化[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3386-3395. |
[7] | 王昱, 关智慧, 李远鹏. 基于轨迹预测和分布式MADDPG的无人机集群追击决策[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3623-3628. |
[8] | 阚绪康, 史格非, 杨雪榕. 基于动态特征点滤除与关键帧选择优化的ORB-SLAM2算法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3185-3190. |
[9] | 陈廷伟, 张嘉诚, 王俊陆. 面向联邦学习的随机验证区块链构建[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2770-2776. |
[10] | 黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919. |
[11] | 符五久 周林 邓建杰 游泳. 分数阶自治动力学系统初值问题的递推公式及其应用[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[12] | 沈涵, 王中生, 周舟, 王长元. 基于多应用场景的改进DV-Hop定位模型[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1219-1227. |
[13] | 马源源, 解蕾蕾, 董南, 刘娜. 考虑用户能动性和流动性的舆情传播模型[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 619-627. |
[14] | 郭呈 史春秀 梅顺峰 张熠. 基于大数据的复杂系统智能建模方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[15] | 李爽, 周悦, 张昕, 张孟. 面向效率与多样性的自动驾驶关键场景生成方法[J]. 《计算机应用》唯一官方网站, 2023, 43(S2): 157-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||