1 |
KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems [J]. Computer, 2009, 42(8): 30-37.
|
2 |
SCHAFER J B, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems [M]// The Adaptive Web: Methods and Strategies of Web Personalization. Cham: Springer, 2007: 291-324.
|
3 |
潘润超,虞启山,熊泓霏,等.基于深度图神经网络的协同推荐算法[J].计算机应用,2023,43(9):2741-2746.
|
|
PAN R C, YU Q S, XIONG H F, et al. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9):2741-2746.
|
4 |
樊海玮,鲁芯丝雨,张丽苗,等.融合知识图谱和图注意力网络的引文推荐算法[J].计算机应用,2023,43(8):2420-2425.
|
|
FAN H W, LU X S Y, ZHANG L M, et al. Citation recommendation algorithm fusing knowledge graph and graph attention network [J]. Journal of Computer Applications, 2023, 43(8):2420-2425.
|
5 |
HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering [C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182.
|
6 |
WANG X, HE X, WANG M, et al. Neural graph collaborative filtering [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.
|
7 |
HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.
|
8 |
BERG R V D, KIPF T N, WELLING M. Graph convolutional matrix completion [EB/OL]. [2023-08-10]. .
|
9 |
YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974-983.
|
10 |
YANG X, WU J, YU J. Interest-aware message-passing layer-refined graph convolutional network for recommendation [J]. Symmetry, 2023, 15(5): 1013.
|
11 |
MAO K, ZHU J, XIAO X, et al. UltraGCN: ultra simplification of graph convolutional networks for recommendation [C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1253-1262.
|
12 |
SHEN Y, WU Y, ZHANG Y, et al. How powerful is graph convolution for recommendation? [C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1619-1629.
|
13 |
GUO J, DU L, CHEN X, et al. On manipulating signals of user-item graph: a Jacobi polynomial-based graph collaborative filtering [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023:602-613.
|
14 |
GIDARIS S, SINGH P, KOMODAKIS N. Unsupervised representation learning by predicting image rotations [EB/OL]. [2023-08-12]. .
|
15 |
DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4171-4186.
|
16 |
WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735.
|
17 |
YU J, YIN H, XIA X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1294-1303.
|
18 |
LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning [C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2320-2329.
|
19 |
XIA L, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 70-79.
|
20 |
YANG X-Y, XU F, YU J, et al. Graph neural network-guided contrastive learning for sequential recommendation [J]. Sensors, 2023, 23(12): 5572.
|
21 |
YANG Y, HUANG C, XIA L, et al. Knowledge graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1434-1443.
|
22 |
CHEN M, HUANG C, XIA L, et al. Heterogeneous graph contrastive learning for recommendation [C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 544-552.
|
23 |
FAN Z, XU K, ZHANG D, et al. Graph collaborative signals denoising and augmentation for recommendation [C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 2037-2041.
|
24 |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2009: 452-461.
|
25 |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607.
|
26 |
OORD A V D, LI Y, VINYALS O. Representation learning with contrastive predictive coding [EB/OL]. [2023-08-05]. .
|
27 |
JIANG Y, HUANG C, XIA L. Adaptive graph contrastive learning for recommendation [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 4252-4261.
|
28 |
REN X, XIA L, YANG Y, et al. SSLRec: a self-supervised learning library for recommendation [EB/OL]. [2023-08-15]. .
|