《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (10): 3081-3089.DOI: 10.11772/j.issn.1001-9081.2023101486

• 人工智能 • 上一篇    下一篇

基于提示增强与双图注意力网络的复杂因果关系抽取

邓金科1,2, 段文杰1,2, 张顺香1,2(), 汪雨晴1,2, 李书羽1,2, 李嘉伟1,2   

  1. 1.安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
    2.合肥综合性国家科学中心 人工智能研究院,合肥 230088
  • 收稿日期:2023-11-02 修回日期:2024-01-10 接受日期:2024-01-19 发布日期:2024-10-15 出版日期:2024-10-10
  • 通讯作者: 张顺香
  • 作者简介:邓金科(2001—),男,安徽亳州人,硕士研究生,CCF会员,主要研究方向:数据挖掘、信息抽取
    段文杰(2000—),男,安徽宿州人,硕士研究生,CCF会员,主要研究方向:情感分析
    张顺香(1970—),男,安徽无为人,教授,博士,主要研究方向:Web挖掘、语义搜索、关系抽取、复杂网络分析 sxzhang@aust.edu.cn
    汪雨晴(2000—),女,安徽蚌埠人,硕士研究生,CCF会员,主要研究方向:数据挖掘
    李书羽(1999—),女,安徽铜陵人,硕士研究生,主要研究方向:数据挖掘
    李嘉伟(1999—),男,安徽宣城人,硕士研究生,主要研究方向:情感分析。
  • 基金资助:
    国家自然科学基金资助项目(62076006);安徽高校协同创新项目(GXXT?2021?008)

Complex causal relationship extraction based on prompt enhancement and bi-graph attention network

Jinke DENG1,2, Wenjie DUAN1,2, Shunxiang ZHANG1,2(), Yuqing WANG1,2, Shuyu LI1,2, Jiawei LI1,2   

  1. 1.School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China
    2.Institute of Artificial Intelligence,Hefei Comprehensive National Science Center,Hefei Anhui 230088,China
  • Received:2023-11-02 Revised:2024-01-10 Accepted:2024-01-19 Online:2024-10-15 Published:2024-10-10
  • Contact: Shunxiang ZHANG
  • About author:DENG Jinke, born in 2001, M. S. candidate. His research interests include data mining, information extraction.
    DUAN Wenjie, born in 2000, M. S. candidate. His research interests include sentiment analysis.
    WANG Yuqing, born in 2000, M. S. candidate. Her research interests include data mining.
    LI Shuyu, born in 1999, M. S. candidate. Her research interests include data mining.
    LI Jiawei, born in 1999, M. S. candidate. His research interests include sentiment analysis.
  • Supported by:
    National Natural Science Foundation of China(62076006);University Synergy Innovation Program of Anhui Province(GXXT-2021-008)

摘要:

针对复杂因果句实体密度高、句式冗长等特点导致的外部信息不足和信息传递遗忘问题,提出一种基于提示增强与双图注意力网络(BiGAT)的复杂因果关系抽取模型PE-BiGAT(Prompt Enhancement and Bi-Graph Attention Network)。首先,抽取句子中的结果实体并与提示学习模板组成提示信息,再通过外部知识库增强提示信息;其次,将提示信息输入BiGAT,同时结合关注层与句法和语义依存图,并利用双仿射注意力机制缓解特征重叠的情况,增强模型对关系特征的感知能力;最后,用分类器迭代预测句子中的所有因果实体,并通过评分函数分析句子中所有的因果对。在SemEval-2010 task 8和AltLex数据集上的实验结果表明,与RPA-GCN(Relationship Position and Attention-Graph Convolutional Network)相比,所提模型的F1值提高了1.65个百分点,其中在链式因果和多因果句中分别提高了2.16和4.77个百分点,验证了所提模型在处理复杂因果句时更具优势。

关键词: 复杂因果关系抽取, 提示增强, 双图注意力网络, 双仿射注意力, 评分函数

Abstract:

A complex causal relationship extraction model based on prompt enhancement and Bi-Graph ATtention network (BiGAT) — PE-BiGAT (Prompt Enhancement and Bi-Graph Attention Network) was proposed to address the issues of insufficient external information and information transmission forgetting caused by the high density and long sentence patterns of complex causal sentences. Firstly, the result entities from the sentence were extracted and combined with the prompt learning template to form the prompt information, and the prompt information was enhanced through an external knowledge base. Then, the prompt information was input into the BiGAT, the attention layer was combined with syntax and semantic dependency graphs, and the biaffine attention mechanism was used to alleviate feature overlapping and enhance the model’s perception of relational features. Finally, all causal entities in the sentence were predicted iteratively by the classifier, and all causal pairs in the sentence were analyzed through a scoring function. Experimental results on SemEval-2010 task 8 and AltLex datasets show that compared with RPA-GCN (Relationship Position and Attention?Graph Convolutional Network), the proposed model improves the F1 score by 1.65 percentage points, with 2.16 and 4.77 percentage points improvements in chain causal and multi-causal sentences, which confirming that the proposed model has an advantage in dealing with complex causal sentences.

Key words: complex causal relationship extraction, prompt enhancement, Bi-Graph Attention Network (BiGAT), biaffine attention, scoring function

中图分类号: