1 |
VAPNIK V N, LERNER A Y. Recognition of patterns with help of generalized portraits [J]. Avtomatika i Telemekhanika, 1963, 24(6): 774-780.
|
2 |
TAX D M J, DUIN R P W. Support vector data description [J]. Machine Learning, 2004, 54: 45-66.
|
3 |
CHANG W C, LEE C P, LIN C J. A revisit to support vector data description [EB/OL]. [2023-09-02]..
|
4 |
PLATT J. Sequential minimal optimization: a fast algorithm for training support vector machines [EB/OL]. [2023-09-04]..
|
5 |
BOTTOU L, LIN C J. Support vector machine solvers [EB/OL]. [2023-09-03]..
|
6 |
FAN R E, CHANG K W, HSIEH C J, et al. LIBLINEAR: a library for large linear classification[J]. Journal of Machine Learning Research, 2008, 9: 1871-1874.
|
7 |
SCHEINBERG K. An efficient implementation of an active set method for SVMs[J]. Journal of Machine Learning Research, 2006, 7: 2237-2257.
|
8 |
JIANG H, WANG H, HU W, et al. Fast incremental SVDD learning algorithm with the Gaussian kernel [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3991-3998.
|
9 |
ZHANG J, ZHANG Q, QIN X, et al. A two-stage fault diagnosis methodology for rotating machinery combining optimized support vector data description and optimized support vector machine [J]. Measurement, 2022, 200: No.111651.
|
10 |
ZHAO Y P, XIE Y L, YE Z F. A new dynamic radius SVDD for fault detection of aircraft engine [J]. Engineering Applications of Artificial Intelligence, 2021, 100: No.104177.
|
11 |
TAO X, CHEN W, ZHANG X, et al. SVDD boundary and DPC clustering technique-based oversampling approach for handling imbalanced and overlapped data [J]. Knowledge-Based Systems, 2021, 234: No.107588.
|
12 |
TAO X, ZHENG Y, CHEN W, et al. SVDD-based weighted oversampling technique for imbalanced and overlapped dataset learning [J]. Information Sciences, 2022, 588: 13-51.
|
13 |
WU X, LIU S, BAI Y. The manifold regularized SVDD for noisy label detection [J]. Information Sciences, 2023, 619: 235-248.
|
14 |
胡天杰,胡文军,王士同. 分布熵惩罚的支持向量数据描述[J]. 计算机应用, 2021, 41(8): 2212-2218.
|
|
HU T J, HU W J, WANG S T. Distribution entropy penalized support vector data description [J]. Journal of Computer Applications, 2021, 41(8): 2212-2218.
|
15 |
XIE W, LIANG G, GUO Q. A new improved FSVM algorithm based on SVDD [J]. Concurrency and Computation: Practice and Experience, 2019, 31(9): No.e4893.
|
16 |
LI D, XU X, WANG Z, et al. Boundary-based Fuzzy-SVDD for one-class classification[J]. International Journal of Intelligent Systems, 2022, 37(3): 2266-2292.
|
17 |
ALAM S, SONBHADRA S K, AGARWAL S, et al. Sample reduction using Farthest Boundary Point Estimation (FBPE) for Support Vector Data Description (SVDD) [J]. Pattern Recognition Letters, 2020, 131: 268-276.
|
18 |
CHOU H Y, LIN P Y, LIN C J. Dual coordinate-descent methods for linear one-class SVM and SVDD [C]// Proceedings of the 2020 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2020: 181-189.
|
19 |
CARLEVARO A, MONGELLI M. A new SVDD approach to reliable and explainable AI [J]. IEEE Intelligent Systems, 2022, 37(2): 55-68.
|
20 |
ORR G B, MÜLLER K R. Neural networks: tricks of the trade, LNCS 1524 [M]. Berlin: Springer, 1998: 9-48.
|
21 |
LASKOV P, GEHL C, KRÜGER S, et al. Incremental support vector learning: analysis, implementation and applications [J]. Journal of Machine Learning Research, 2006, 7: 1909-1936.
|
22 |
WANG X, QU J, DI Y, et al. Fast online SVDD based on support vectors merging[C]// Proceedings of the 10th International Conference on Advanced Computational Intelligence. Piscataway: IEEE, 2018: 197-203.
|
23 |
刘红英,夏勇,周水生. 数学规划基础[M]. 北京:北京航空航天大学出版社, 2012:191-194.
|
|
LIU H Y, XIA Y, ZHOU S S. Mathematical programming basics[M]. Beijing: Beihang University Press, 2012: 191-194.
|
24 |
NOCEDAL J, WRIGHT S J. Numerical optimization [M]. New York: Springer, 1999: 467-480.
|
25 |
GALLIER J. The Schur complement and symmetric positive semidefinite (and definite) matrices[EB/OL]. [2023-09-06]..
|
26 |
刘浩洋,户将,李勇峰,等. 最优化:建模、算法与理论[M]. 北京:高等教育出版社, 2020:184-193.
|
|
LIU H Y, HU J, LI Y F, et al. Optimization: modeling, algorithm and theory [J]. Beijing: Higher Education Press, 2020: 184-193.
|
27 |
CHANG C C, TSAI H C, LEE Y J. A minimum enclosing balls labeling method for support vector clustering [R]. Taipei, Taiwan: National Taiwan University of Science and Technology, 2007.
|
28 |
DUA D, GRAFF C. UCI machine learning repository [DB/OL]. [2023-09-08]..
|
29 |
WOODS K S, DOSS C C, BOWYER K W, et al. Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography [J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(6): 1417-1436.
|
30 |
CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): No.27.
|