《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1556-1563.DOI: 10.11772/j.issn.1001-9081.2024050695

• 网络空间安全 • 上一篇    

基于无证书群签名的车联网条件隐私保护认证方案

徐越端1,2, 陈建伟1,2(), 朱恒亮3   

  1. 1.福建师范大学 计算机与网络空间安全学院,福州 350117
    2.福建省网络安全与密码技术重点实验室,福州 350007
    3.福建理工大学 计算机科学与数学学院,福州 350118
  • 收稿日期:2024-05-27 修回日期:2024-08-11 接受日期:2024-08-20 发布日期:2024-09-04 出版日期:2025-05-10
  • 通讯作者: 陈建伟
  • 作者简介:徐越端(1999—),男,福建莆田人,硕士研究生,主要研究方向:车联网、信息安全、隐私保护
    陈建伟(1980—),男,福建漳州人,副教授,博士,CCF会员,主要研究方向:物联网、网络安全与隐私保护
    朱恒亮(1981—),男,山东济宁人,讲师,博士,CCF会员,主要研究方向:图像处理、深度学习、对抗安全攻击、计算机视觉。
  • 基金资助:
    福建省自然科学基金资助项目(2023J01296);国家自然科学基金海峡联合基金重点项目(U1905211);福建省中青年教师教育科研项目(JAT220049)

Conditional privacy-preserving authentication scheme based on certificateless group signature for VANET

Yueduan XU1,2, Jianwei CHEN1,2(), Hengliang ZHU3   

  1. 1.College of Computer and Cyber Security,Fujian Normal University,Fuzhou Fujian 350117,China
    2.Fujian Provincial Key Laboratory of Network Security and Cryptology (Fujian Normal University),Fuzhou Fujian 350007,China
    3.College of Computer Science and Mathematics,Fujian University of Technology,Fuzhou Fujian 350118,China
  • Received:2024-05-27 Revised:2024-08-11 Accepted:2024-08-20 Online:2024-09-04 Published:2025-05-10
  • Contact: Jianwei CHEN
  • About author:XU Yueduan, born in 1999, M. S. candidate. His research interests include vehicular Ad hoc network, information security, privacy protection.
    CHEN Jianwei, born in 1980, Ph. D., associate professor. His research interests include internet of things, network security and privacy protection.
    ZHU Hengliang, born in 1981, Ph. D., lecturer. His research interests include image processing, deep learning, countering security attack, computer vision.
  • Supported by:
    Natural Science Foundation of Fujian Province(2023J01296);National Natural Science Foundation of China(U1905211);Education and Scientific Research Project of Young and Middle-Aged Teachers in Fujian Province(JAT220049)

摘要:

车联网(VANET)提高了道路交通效率,但它面临的安全与隐私问题可能导致严重的交通事故,这使得对消息进行匿名认证成为必要;而且已有认证方案仍然不能很好地解决条件隐私保护、匿名认证和认证效率等问题。为此,提出一种基于无证书群签名的车联网条件隐私保护认证方案。首先,结合无证书公钥密码体制和ACJT群签名算法,提出基于无证书群签名的匿名认证方案。在该方案中,当群成员发生变化时,其他群成员不受影响且无须更新密钥;同时群签名生成和验证算法的计算量固定,不受群成员数量影响。此外,为防止车辆因身份匿名而做出恶意行为,方案实现了条件隐私保护,即当恶意行为发生时,可以追查相关车辆的身份并追究责任。安全分析证明该方案能够同时满足前向安全、不可伪造性、不可链接性等安全需求;性能实验结果表明该方案对比同类方案在认证效率上至少提高了31.63%,通信开销至少降低了33.12%。

关键词: 车联网, 椭圆曲线, 无证书, 群签名, 匿名认证

Abstract:

The Vehicular Ad hoc NETwork (VANET) improves road traffic efficiency, but the security and privacy issues it faces may lead to serious traffic accidents, making anonymous authentication of messages necessary. However, existing authentication schemes still struggle to the problems of conditional privacy preservation, anonymous authentication and authentication efficiency. To address these problems, a conditional privacy-preserving authentication scheme for VANET based on certificateless group signature was proposed. Firstly, an anonymous authentication scheme based on certificateless group signature was proposed by combining certificateless public key cryptosystem with the ACJT group signature algorithm. In this scheme, when group member changes, other group members remain unaffected and require no key updates; moreover, the computational overhead of the group signature generation and verification algorithm remains constant, independent of the group member number. Furthermore, to prevent vehicles from committing malicious acts due to identity anonymity, the scheme realized conditional privacy protection, i.e., when a malicious act occurs, the identity of the relevant vehicle can be traced and held responsible. Security analysis proves that the scheme simultaneously satisfies forward security, unforgeability, and unlinkability requirements. Performance experimental results show that compared with similar schemes, the proposed scheme improves the authentication efficiency by at least 31.63% and reduces the communication overhead by at least 33.12%.

Key words: Vehicular Ad hoc NETwork (VANET), elliptic curve, certificateless, group signature, anonymous authentication

中图分类号: