1 |
QIU G, LIU B, BU J, et al. Opinion word expansion and target extraction through double propagation[J]. Computational Linguistics, 2011, 37(1): 9-27.
|
2 |
TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: The COLING 2016 Organizing Committee, 2016: 3298-3307.
|
3 |
PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8600-8607.
|
4 |
CAI H, XIA R, YU J. Aspect-category-opinion-sentiment quadruple extraction with implicit aspects and opinions[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 340-350.
|
5 |
ZHANG W, LI X, DENG Y, et al. Towards generative aspect-based sentiment analysis[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg: ACL, 2021: 504-510.
|
6 |
YAN H, DAI J, JI T, et al. A unified generative framework for aspect-based sentiment analysis[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2416-2429.
|
7 |
ZHANG W, DENG Y, LI X, et al. Aspect sentiment quad prediction as paraphrase generation[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 9209-9219.
|
8 |
BAO X, WANG Z, JIANG X, et al. Aspect-based sentiment analysis with opinion tree generation[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 4044-4050.
|
9 |
BU J, REN L, ZHENG S, et al. ASAP: a Chinese review dataset towards aspect category sentiment analysis and rating prediction[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 2069-2079.
|
10 |
XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2339-2349.
|
11 |
ZHANG M, QIAN T. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 3540-3549.
|
12 |
CAI H, TU Y, ZHOU X, et al. Aspect-category based sentiment analysis with hierarchical graph convolutional network[C]// Proceedings of the 28th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2020: 833-843.
|
13 |
李自亮,朱广丽,张玉雷,等. 集成句法与情感知识的方面级情感分析模型[J/OL]. 计算机应用 [2024-09-01]..
|
|
LI Z L, ZHU G L, ZHANG Y L, et al. Aspect-based sentiment analysis model integrating syntax and sentiment knowledge[J/OL]. Journal of Computer Applications [2024-09-01]..
|
14 |
MADAAN A, ZHOU S, ALON U, et al. Language models of code are few-shot commonsense learners[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 1384-1403.
|
15 |
GAO L, MADAAN A, ZHOU S, et al. PAL: program-aided language models[C]// Proceedings of the 40th International Conference on Machine Learning. New York: JMLR.org, 2023: 10764-10799.
|
16 |
WANG X, LI S, JI H. Code4Struct: code generation for few-shot event structure prediction[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 3640-3663.
|
17 |
LI Q, JI H, HUANG L. Joint event extraction via structured prediction with global features[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2013: 73-82.
|
18 |
LIU J, CHEN Y, LIU K, et al. Event extraction as machine reading comprehension[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 1641-1651.
|
19 |
LI S, JI H, HAN J. Document-level event argument extraction by conditional generation[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 894-908.
|
20 |
LU Y, LIN H, XU J, et al. Text2Event: controllable sequence-to-structure generation for end-to-end event extraction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2795-2806.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010 .
|
22 |
TOUVRON H, MARTIN L, STONE K, et al. Llama 2: open foundation and fine-tuned chat models[EB/OL]. [2024-04-21]..
|
23 |
RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21: 1-67.
|
24 |
FENG Z, GUO D, TANG D, et al. CodeBERT: a pre-trained model for programming and natural languages [C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 1536-1547.
|
25 |
WANG Y, WANG W, JOTY S, et al. CodeT5: identifier-aware unified pre-trained encoder-decoder models for code understanding and generation[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 8696-8708.
|
26 |
WANG Y, LE H, GOTMARE A, et al. CodeT5+: open code large language models for code understanding and generation[C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 1069-1088.
|
27 |
FRIED D, AGHAJANYAN A, LIN J, et al. InCoder: a generative model for code infilling and synthesis [EB/OL]. [2024-04-21]..
|
28 |
ZHANG W, DENG Y, LI X, et al. Aspect sentiment quad prediction as paraphrase generation [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 9209-9219.
|
29 |
MAO Y, SHEN Y, YANG J, et al. Seq2path: generating sentiment tuples as paths of a tree [C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 2215-2225.
|