《计算机应用》唯一官方网站

• •    下一篇

面向物联网图像的深度压缩感知网络设计及其混沌加密保护方法

马英杰,覃晶滢,赵耿,肖靖   

  1. 北京电子科技学院
  • 收稿日期:2025-02-17 修回日期:2025-05-26 发布日期:2025-06-10 出版日期:2025-06-10
  • 通讯作者: 覃晶滢
  • 基金资助:
    国家自然科学基金项目;中央高校基本科研业务费资金资助

Deep compressed sensing network for IoT images and chaotic encryption protection

  • Received:2025-02-17 Revised:2025-05-26 Online:2025-06-10 Published:2025-06-10
  • Supported by:
    the National Natural Science Foundation of china;the Fundamental Research Funds for the Central Universities

摘要: 为了减少物联网大量冗余图像数据传输和存储带来的资源需求和隐私泄露隐患,提出了一种面向物联网图像的深度压缩感知网络及其混沌加密保护方法。首先,提出了一种改进的深度压缩感知网络来用于图像的高质量压缩重构,具体而言该网络通过通道注意力机制对传统深度重构网络中的残差块进行改进,并结合多尺度分支与融合模块进行了并行融合设计,改进了传统基于卷积层残差堆叠的深度重构网络的重构性能。实验表明,该网络重构图像的峰值信噪比(PSNR)相较于深度压缩感知的经典方法CSNet+平均增长了0.606dB,结构相似性(SSIM)平均提高了0.0111。接着,提出了一种新的多腔体混沌系统,该系统通过球坐标变换和两组奇偶控制的阶梯函数可以实现球形腔体在x、y、z任意单方向或者双方向的腔体拓展,具有较好的混沌特性和随机性,可有效用于图像加密。最后,结合所提的深度压缩感知网络和多腔体混沌系统,基于混沌索引置乱和扩散方法对深度压缩感知的测量图像进行了加解密的设计,并进行了详细的安全性分析,保证了图像传输的安全性。

关键词: 关键词: 深度压缩感知, 注意力机制, 多尺度, 多腔体混沌系统, 混沌加密

Abstract: To address the resource demands and privacy leakage risks associated with the transmission and storage of a large number of redundant images in the Internet of Things (IoT), a deep compressed sensing network and its chaotic encryption protection method for IoT images are proposed. First, an improved deep compressed sensing network is introduced for high-quality image compression and reconstruction. Specifically, this network enhances residual blocks in traditional deep reconstruction networks using a channel attention mechanism and integrates multi-scale branches and fusion modules through parallel fusion design. These enhancements significantly improve reconstruction performance compared to conventional deep reconstruction networks based on convolutional residual stacking layers. Experimental results demonstrate that the proposed network achieves an average improvement of 0.606 dB in Peak Signal-to-Noise Ratio (PSNR) and an average increase of 0.0111 in Structural Similarity Index Measure (SSIM) over the classical deep compressed sensing method CSNet+. Subsequently, a novel multi-cavity chaotic system is proposed, employing spherical coordinate transformations and two sets of parity-controlled step functions to facilitate cavity expansions in arbitrary single or double directions along the x, y, and z axes. This system exhibits strong chaotic characteristics and randomness, making it highly effective for image encryption. Finally, integrating the proposed deep compressed sensing network and multi-cavity chaotic system, an encryption and decryption scheme based on chaotic index scrambling and diffusion for deep compressed sensing measurements is designed, accompanied by detailed security analyses, thus ensuring secure image transmission.

Key words: Keywords: deep compressed sensing, attention mechanism, multi-scale, multi-cavity chaotic system, chaotic encryption