计算机应用 ›› 2011, Vol. 31 ›› Issue (03): 702-705.DOI: 10.3724/SP.J.1087.2011.00702
穆文瑜1,李茹2
MU Wen-yu1,LI Ru2
摘要: 提出一种基于K-Means聚类的非线性时间序列预测模型。利用混沌时间序列短期可以预测的特点,对选取的某两处煤矿构建了瓦斯浓度预测模型。采用关联积分方法确定相空间时间延迟τ和相空间嵌入维数m。然后在重构相空间中,运用基于K-Means聚类的加权一阶局域法构建煤矿瓦斯浓度的预测模型。结果表明:在预测间隔1min的数据时,使用200个连续的数据进行训练,预测效果较好,误差达到最小值0.0341;在预测间隔多分钟的数据时,使用200个15min间隔的数据进行训练,预测效果较好,误差达到最小值0.0437,可见该瓦斯浓度时序在间隔15min后又恢复了初始的混沌性。
中图分类号: