计算机应用 ›› 2011, Vol. 31 ›› Issue (06): 1678-1680.DOI: 10.3724/SP.J.1087.2011.01678

• 数据库技术 • 上一篇    下一篇

基于互信息量的分类模型

张震1,胡学钢2   

  1. 1. 淮北师范大学 计算机科学与技术学院,安徽 淮北 235000
    2. 合肥工业大学 计算机与信息学院, 合肥 230009
  • 收稿日期:2011-01-05 修回日期:2011-02-23 发布日期:2011-06-20 出版日期:2011-06-01
  • 通讯作者: 张震
  • 作者简介:张震(1977-),女,安徽淮北人,讲师,硕士,主要研究方向:人工智能、数据挖掘;胡学钢(1961-),男,安徽当涂人,教授,主要研究方向:知识工程、数据挖掘。
  • 基金资助:
    安徽省自然科学研究项目

Classification model based on mutual information

ZHANG Zhen1,HU Xuegang2   

  1. 1. School of Computer Science and Technology, Huaibei Normal University, Huaibei Anhui 235000, China
    2. School of Computer and Information, Hefei University of Technology, Hefei Anhui 230009, China
  • Received:2011-01-05 Revised:2011-02-23 Online:2011-06-20 Published:2011-06-01
  • Contact: ZHANG Zhen

摘要: 针对分类数据集中属性之间的相关性及每个属性取值对属性权值的贡献程度的差别,提出基于互信息量的分类模型以及影响因子与样本预测信息量的计算公式,并利用样本预测信息量预测分类标号。经实验证明,基于互信息量的分类模型可以有效地提高分类算法的预测精度和准确率。

关键词: 互信息量, 平均互信息量, 分类模型, 影响因子, 样本预测信息

Abstract: Concerning the relevance between the attributes and the contribution difference of attribute values to attribute weights in classification dataset, an improved classification model and the formulas for calculating the impact factor and sample forecast information were proposed based on mutual information. And the classification model predicted the unlabelled object classes with the sample forecast information. Finally, the experimental results show that the classification model based on mutual information can effectively improve forecast precision and accuracy performance of classification algorithm.

Key words: mutual information, average mutual information, classification model, impact factor, sample forecast information

中图分类号: