计算机应用 ›› 2013, Vol. 33 ›› Issue (05): 1233-1236.DOI: 10.3724/SP.J.1087.2013.01233

• 网络与通信 • 上一篇    下一篇

基于非线性主成分分析的自适应变步长盲源分离算法

辜方林1,张杭1,李伦辉2   

  1. 1. 解放军理工大学 通信工程学院,南京 210007
    2. 中国人民解放军75708部队,长沙 410007
  • 收稿日期:2012-09-17 修回日期:2012-11-06 出版日期:2013-05-01 发布日期:2013-05-08
  • 通讯作者: 辜方林
  • 作者简介:辜方林(1986-),男,湖南新化人,博士研究生,主要研究方向:盲信号处理、统计信号处理;张杭(1962-),女,浙江天台人,教授,博士生导师,主要研究方向:盲信号处理、认知无线电、卫星通信;李伦辉(1983-),男,湖南衡阳人,硕士,主要研究方向:信号与信息处理。
  • 基金资助:

    国家自然科学基金资助项目(61261039);国家973计划项目(2009CB320400)

Adaptive variable step-size blind source separation algorithm based on nonlinear principal component analysis

GU Fanglin1,ZHANG Hang1,LI Lunhui2   

  1. 1. College of Communication Engineering, PLA University of Science and Technology, Nanjing Jiangsu 210007, China
    2. No. 75708 Troops of PLA, Changsha Hunan 410007, China
  • Received:2012-09-17 Revised:2012-11-06 Online:2013-05-08 Published:2013-05-01
  • Contact: GU Fanglin

摘要: 算法的迭代步长对于算法的收敛性能有着重要影响。针对固定步长的非线性主成分分析(NPCA)算法不能兼顾收敛速度和估计精度的情形,提出基于梯度的自适应变步长NPCA算法和最优变步长NPCA算法两种自适应变步长算法来改善其收敛性能。特别地,最优变步长NPCA算法通过对代价函数进行一阶线性近似表示,从而计算出当前的最优迭代步长。该算法的迭代步长随估计误差的变化而变化,估计误差大,迭代步长相应大,反之亦然;且不需要人工设置任何参数。仿真结果表明,当算法的估计精度相同时,与固定步长NPCA算法相比,两种自适应变步长NPCA算法相对固定步长NPCA算法都具有更好的收敛速度或跟踪性能,且最优变步长NPCA算法的性能优于基于梯度的自适应变步长NPCA算法。

关键词: 盲源分离, 非线性主成分分析, 变步长

Abstract: The design of the step-size is crucial to the convergence rate of the Nonlinear Principle Component Analysis (NPCA) algorithm. However, the commonly used fixed step-size algorithm can hardly satisfy the convergence speed and estimation precision requirements simultaneously. To address this issue, the gradient-based adaptive step-size NPCA algorithm and optimal step-size NPCA algorithm were proposed to speed up the convergence rate and improve tracking ability. In particular, the optimal step-size NPCA algorithm linearly approximated the contrast function and figured out the optimal step-size currently. The optimal step-size NPCA algorithm utilized an adaptive step-size whose value was adjusted in sympathy with the value of the contrast function and free from any manual parameters. The simulation results show that the proposed adaptive step-size NPCA algorithms have faster convergence rate or better tracking ability in comparison with the fixed step-size NPCA algorithm when the estimation precisions are same. The convergence performance of the optimal step-size NPCA algorithm is superior to that of the gradient-based adaptive NPCA algorithm.

Key words: blind source separation, Nonlinear Principal Component Analysis (NPCA), variable step-size

中图分类号: