[1] RODRIGUEZ A O. Principles of magnetic resonance imaging[J]. Revista Mexicana de Física, 2004, 50(3): 272-286.
[2] LUO S, ZHOU G. Medical image processing and analysis[M]. Beijing: Science Press, 2010.(罗述谦,周果宏.医学图像处理与分析[M].北京:科学出版社,2010.)
[3] CHEN J. Medical image processing and 3D reconstruction technology research[M]. Beijing: Science Press, 2010.(陈佳欣.医学图像处理及三维重建技术研究[M].北京:科学出版社,2010.)
[4] NOWAK R D. Wavelet-based Rician noise removal for magnetic resonance imaging[J]. IEEE Transactions on Image Processing, 1999, 8(10): 1408-1419.
[5] GONZALEZ R C, WOODS R E, EDDINS S L. Digital image processing using Matlab[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2005: 64-130.( GONZALEZ R C, WOODS R E, EDDINS S L.数字图像处理:Matlab版[M].2版.北京:电子工业出版社,2005:64-130.)
[6] MOHAN J, GUO Y, KRISHNAVENI V, et al. MRI denoising based on neutrosophic Wiener filtering[C]// Proceedings of the 2012 IEEE International Conference on Imaging Systems and Techniques. Piscataway: IEEE, 2012: 327-331.
[7] COUPE P, MANJON J V, ROBLES M, et al. Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising[J]. IET Image Processing, 2012, 6(5): 558-568.
[8]GOLSHAN H M, HASANZADEH R P R, YOUSEFZADEH S C. An MRI denoising method using image data redundancy and local SNR estimation [J]. Magnetic Resonance Imaging, 2013, 31(7): 1206-1217.
[9]RAJAN J, VERAAART J, van AUDEKERKE J, et al. Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images[J]. Magnetic Resonance Imaging, 2012, 30(10): 1512-1518.
[10]MALINSKY M, PETER R, HODNELAND E, et al. Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation[J]. Journal of Digital Imaging, 2013, 26(4): 774-785.
[11] SHENN Y. Efficient normalized cross correlation calculation method for stereo vision based robot navigation[J]. Frontiers of Computer Science in China, 2011, 5(2): 227-235.
[12] TSAI D M, LIN C T. Fast normalized cross correlation for defect detection[J]. Pattern Recognition Letters, 2003, 24(15): 2625-2631.
[13] XIE J, LIU T, CHEN Z, et al. Joint template matching algorithm for associated multi-object detection[J]. KSII Transactions on Internet and Information Systems, 2012, 6(1): 395-405.
[14] THEODORIDIS S, KOUTROUMBAS K. Pattern recognition[M]. 4th ed. New York: Academic Press, 2008.
[15] BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling and Simulation, 2005, 4(2): 490-530.
[16] SIJBERS J, den DEKKER A J, SCHEUNDERS P, et al. Maximum-likelihood estimation of Rician distribution parameters[J]. IEEE Transactions on Medical Imaging, 1998, 17(3): 357-361.
[17] AARYA I, JIANG, D, GALE T. Signal dependent Rician noise denoising using nonlinear filter[J]. Lecture Notes on Software Engineering, 2013, 1(4): 344-349.
[18] MANJON J V, CARBONELL-CABALLERO J, LULL J J, et al. MRI denoising using non-local means[J]. Medical Image Analysis, 2008, 12(4): 514-523.
[19] GOLSHAN H M, HASANZADEH R P R. A non-local Rician noise reduction approach for 3-D magnitude magnetic resonance images[C]// Proceedings of the 2011 7th Iranian Machine Vision and Image Processing. Piscataway: IEEE, 2011: 1-5.
[20] HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801.
[21] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[22] RAJAN J, JEURISSEN B, VERHOYE M, et al. Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods[J]. Physics in Medicine and Biology, 2011, 56(16): 5221-5234. |