[1] YAKOP M A M, MUTALIB S, ABDUL-RAHMAN S. Data projection effects in frequent itemsets mining[M]//Soft Computing in Data Science. Berlin:Springer, 2015:23-32. [2] MALVIYA J, SINGH A, SINGH D. An FP tree based approach for extracting frequent pattern from large database by applying parallel and partition projection[J]. International Journal of Computer Applications, 2015, 114(18):1-5. [3] DEEPAK A, FERNÁNDEZ-BACA D, TIRTHAPURA S, et al. EvoMiner:frequent subtree mining in phylogenetic databases[J]. Knowledge and Information Systems, 2014, 41(3):559-590. [4] 吴倩,罗健旭.压缩FP-Tree的改进搜索算法[J]. 计算机工程与设计,2015,36(7):1771-1777.(WU Q, LUO J X. Improved search algorithm of compressed FP-Tree[J]. Computer Engineering and Design, 2015, 36(7):1771-1777.) [5] ZHANG S, DU Z, WANG J T. New techniques for mining frequent patterns in unordered trees[J]. IEEE Transactions on Cybernetics, 2015, 45(6):1113-1125. [6] FENG B, XU Y, ZHAO N, et al. A new method of mining frequent closed trees in data streams[C]//Proceedings of the 20107th International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway, NJ:IEEE, 2010:2245-2249. [7] 杨沛,谭琦.极大频繁子树挖掘及其应用[J].计算机科学,2008,35(2):150-153.(YAN P, TAN Q. Maximal frequent subtree mining and its application[J]. Computer Science, 2008, 35(2):150-153.) [8] XIN D, HAN J, YAN X, et al. Mining compressed frequent-pattern sets[C]//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, Norway:VLDB Endowment, 2005:709-720. [9] LIU L, LIU J. Mining frequent embedded subtree from tree-like databases[C]//Proceedings of the 2011 International Conference on Internet Computing and Information Services. Washington, DC:IEEE Computer Society, 2011:3-7. [10] JAIN A K, DUBES R C. Algorithms for Clustering Data[M]. Upper Saddle River, NJ:Prentice-Hall, Inc., 1988:67-73. [11] HAN K, LV W, YIN B, et al. Constrained frequent subtree mining method[C]//Proceedings of the 20145th International Conference on Digital Home. Washington, DC:IEEE Computer Society, 2014:287-292. |