| 1 | WOOD M L, HENKELMAN R M. Truncation artifacts in magnetic resonance imaging[J]. Magnetic Resonance in Medicine, 1985, 2(6): 517-526.  10.1002/mrm.1910020602 | 
																													
																						| 2 | CZERVIONKE L F, CZERVIONKE J M, DANIELS D L, et al. Characteristic features of MR truncation artifacts[J]. American Journal of Neuroradiology, 1988, 9(5): 815-824. | 
																													
																						| 3 | BARKER G J, PARKER G J M, WHEELER-KINGSHOTT C A. Gibbs ringing and negative ADC values[C]// Proceedings of the 9th Joint Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine. Berkeley: International Society for Magnetic Resonance in Medicine, 2001: 1546-1546. | 
																													
																						| 4 | 黄世亮,裘鉴卿. 基于小波收缩减小磁共振图像截断伪影的方法[J]. 中北大学学报(自然科学版), 2007, 28(1): 74-78.  10.3969/j.issn.1673-3193.2007.01.017 | 
																													
																						|  | HUANG S L, QIU J Q. Reduction of MRI truncation artifacts based on wavelet shrinkage[J]. Journal of North China University (Natural Science Edition), 2007, 28(1): 74-78.  10.3969/j.issn.1673-3193.2007.01.017 | 
																													
																						| 5 | 王正策,赵凯旋,徐中标,等. 基于局部亚像素移位和隔行局部变差消除Gibbs伪影[J]. 南方医科大学学报, 2019, 39(5):603-608.  10.12122/j.issn.1673-4254.2019.05.17 | 
																													
																						|  | WANG Z C, ZHAO K X, XU Z B, et al. Elimination of Gibbs artifact based on local subpixel shift and interlaced local variation[J]. Journal of Southern Medical University, 2019, 39(5): 603-608.  10.12122/j.issn.1673-4254.2019.05.17 | 
																													
																						| 6 | 叶思,余晓锷. 基于全变分去噪的MRI截断伪影抑制方法的研究[J]. 计算机应用与软件, 2013, 30(3):268-270.  10.3969/j.issn.1000-386x.2013.03.070 | 
																													
																						|  | YE S, YU X E. Study on restraining truncation artifact in MRI based on total variation denoising[J]. Computer Applications and Software, 2013, 30(3): 268-270.  10.3969/j.issn.1000-386x.2013.03.070 | 
																													
																						| 7 | TADMOR E, NEZZAR S, VESE L. A multiscale image representation using hierarchical (BV, L 2) decompositions[J]. Multiscale Modeling and Simulation, 2004, 2(4): 554-579.  10.1137/030600448 | 
																													
																						| 8 | AWATE S P, WHITAKER R T. Unsupervised, information-theoretic, adaptive image filtering for image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 364-376.  10.1109/tpami.2006.64 | 
																													
																						| 9 | ZENG G L. Gibbs artifact reduction by nonnegativity constraint[J]. Journal of Nuclear Medicine Technology, 2011, 39(3): 213-219.  10.2967/jnmt.110.086439 | 
																													
																						| 10 | ZHAO X L, ZHANG H L, ZHOU Y L, et al. Gibbs-ringing artifact suppression with knowledge transfer from natural images to MR images[J]. Multimedia Tools and Applications, 2020, 79(45/46): 33711-33733.  10.1007/s11042-019-08143-6 | 
																													
																						| 11 | ZHANG Q Q, RUAN G H, YANG W, et al. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks[J]. Magnetic Resonance in Medicine, 2019, 82(6): 2133-2145.  10.1002/mrm.27894 | 
																													
																						| 12 | TAMADA D. Review: noise and artifact reduction for MRI using deep learning[EB/OL]. (2020-02-28) [2022-04-28].. | 
																													
																						| 13 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
																													
																						| 14 | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.  10.1109/tmi.2019.2959609 | 
																													
																						| 15 | WANG H N, CAO P, WANG J Q, et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with Transformer[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 2441-2449.  10.1609/aaai.v36i3.20144 | 
																													
																						| 16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. | 
																													
																						| 17 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.  10.1109/iccv48922.2021.00986 | 
																													
																						| 18 | LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using Swin Transformer[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 1833-1844.  10.1109/iccvw54120.2021.00210 | 
																													
																						| 19 | ZHANG L F, SONG J B, GAO A N, et al. Be your own teacher: improve the performance of convolutional neural networks via self distillation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3712-3721.  10.1109/iccv.2019.00381 | 
																													
																						| 20 | LIU B L, RAO Y M, LU J W, et al. MetaDistiller: network self-boosting via meta-learned top-down distillation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12359. Cham: Springer, 2020: 694-709. | 
																													
																						| 21 | ZHANG L F, BAO C L, MA K S. Self-distillation: towards efficient and compact neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4388-4403. | 
																													
																						| 22 | SOUZA R, LUCENA O, GARRAFA J, et al. An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement[J]. NeuroImage, 2018, 170: 482-494.  10.1016/j.neuroimage.2017.08.021 | 
																													
																						| 23 | WANG Z D, CUN X D, BAO J M, et al. Uformer: a general U-shaped Transformer for image restoration[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17662-17672.  10.1109/cvpr52688.2022.01716 |