《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (8): 2477-2485.DOI: 10.11772/j.issn.1001-9081.2022060940
所属专题: 网络空间安全
葛晨洋1,2, 刘勤让2, 裴雪2, 魏帅2, 朱正彬2
收稿日期:2022-06-28
									
				
											修回日期:2022-09-20
									
				
											接受日期:2022-09-22
									
				
											发布日期:2022-10-11
									
				
											出版日期:2023-08-10
									
				
			通讯作者:
					葛晨洋
							作者简介:刘勤让(1975—),男,河南商丘人,教授,博士,主要研究方向:网络空间拟态防御、芯片设计Chenyang GE1,2, Qinrang LIU2, Xue PEI2, Shuai WEI2, Zhengbin ZHU2
Received:2022-06-28
									
				
											Revised:2022-09-20
									
				
											Accepted:2022-09-22
									
				
											Online:2022-10-11
									
				
											Published:2023-08-10
									
			Contact:
					Chenyang GE   
							About author:LIU Qinrang, born in 1975, Ph. D., professor. His research interests include cyberspace mimic defense, chip design.摘要:
针对软件定义网络(SDN)中传统的分布式拒绝服务(DDoS)攻击的防御方案往往忽略了降低SDN工作负载的重要性,并且未考虑攻击缓解的及时性的问题,提出一种SDN中高效协同防御DDoS攻击的方案。首先,通过将部分防御任务卸载到数据平面中,降低控制平面的开销并充分利用数据平面的资源;然后,若检测到异常则产生快速数据路径(XDP)规则,以及时缓解攻击,同时将数据平面的统计信息交由控制平面来进一步检测和缓解攻击,从而在提升准确率的同时进一步降低控制器开销;最后,根据控制平面确定的异常源更新XDP规则。为验证所提方案的有效性,利用Hyenae攻击工具产生了3种不同类型的攻击数据。相较于依赖于控制平面的支持向量机(SVM)方案、新架构防御方案和跨平面协作的防御方案,在防御及时性方面,所提方案分别提高了33.33%、28.57%和21.05%;在中央处理器(CPU)消耗方面,所提方案分别降低了33、11和4个百分点。实验结果表明,所提方案能很好地防御DDoS攻击且有较低的性能开销。
中图分类号:
葛晨洋, 刘勤让, 裴雪, 魏帅, 朱正彬. 软件定义网络中高效协同防御分布式拒绝服务攻击的方案[J]. 计算机应用, 2023, 43(8): 2477-2485.
Chenyang GE, Qinrang LIU, Xue PEI, Shuai WEI, Zhengbin ZHU. Efficient collaborative defense scheme against distributed denial of service attacks in software defined network[J]. Journal of Computer Applications, 2023, 43(8): 2477-2485.
| 机器学习算法 | 训练准确率/% | 测试准确率/% | 检测耗时/ms | 
|---|---|---|---|
| SVM | 99.7 | 96.7 | 0.212 | 
| Logistic | 99.8 | 97.7 | 0.265 | 
| RF | 99.7 | 99.9 | 134.360 | 
表1 不同机器学习算法准确率和检测时间的对比
Tab.1 Accuracy and detection time comparison of different machine learning algorithms
| 机器学习算法 | 训练准确率/% | 测试准确率/% | 检测耗时/ms | 
|---|---|---|---|
| SVM | 99.7 | 96.7 | 0.212 | 
| Logistic | 99.8 | 97.7 | 0.265 | 
| RF | 99.7 | 99.9 | 134.360 | 
| 方案 | 准确率 | F1 | 
|---|---|---|
| 依赖控制器的SVM方案 | 0.966 | 0.936 | 
| 跨平面协作防御方案 | 0.989 | 0.964 | 
| 本文方案 | 0.992 | 0.983 | 
| 新架构防御方案 | 0.996 | 0.987 | 
表2 不同方案准确率和F1的对比
Tab.2 Accuracy and F1 comparison of different schemes
| 方案 | 准确率 | F1 | 
|---|---|---|
| 依赖控制器的SVM方案 | 0.966 | 0.936 | 
| 跨平面协作防御方案 | 0.989 | 0.964 | 
| 本文方案 | 0.992 | 0.983 | 
| 新架构防御方案 | 0.996 | 0.987 | 
| 1 | VISHWAKARMA R, JAIN A K. A survey of DDoS attacking techniques and defence mechanisms in the IoT network[J]. Telecommunication Systems, 2020, 73(1): 3-25. 10.1007/s11235-019-00599-z | 
| 2 | KREUTZ D, RAMOS F M V, VERISSIMO P. Towards secure and dependable software-defined networks[C]// Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. New York: ACM, 2013: 55-60. 10.1145/2491185.2491199 | 
| 3 | 贾锟,王君楠,刘峰. SDN环境下的DDoS检测与缓解机制[J]. 信息安全学报, 2021, 6(1):17-31. 10.1186/s42400-022-00128-7 | 
| JIA K, WANG J N, LIU F. DDoS detection and mitigation framework in SDN[J]. Journal of Cyber Security, 2021, 6(1):17-31. 10.1186/s42400-022-00128-7 | |
| 4 | BERTRONE M, MIANO S, RISSO F, et al. Accelerating Linux security with eBPF iptables[C]// Proceedings of the 2018 ACM SIGCOMM Conference: Posters and Demos. New York: ACM, 2018: 108-110. 10.1145/3234200.3234228 | 
| 5 | 胡小龙. 面向SDN控制器的DDoS攻击检测与防御技术研究[D]. 哈尔滨:哈尔滨工程大学, 2017:21-36. | 
| HU X L. DDoS attack detection and defense technology research for SDN controller[D]. Harbin: Harbin Engineering University, 2017:21-36. | |
| 6 | KALKAN K, ALTAY L, GÜR G, et al. JESS: joint entropy-based DDoS defense scheme in SDN[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2358-2372. 10.1109/jsac.2018.2869997 | 
| 7 | CHEN Z, JIANG F, CHENG Y J, et al. XGBoost classifier for DDoS attack detection and analysis in SDN-based cloud[C]// Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing. Piscataway: IEEE, 2018: 251-256. 10.1109/bigcomp.2018.00044 | 
| 8 | YE J, CHENG X Y, ZHU J, et al. A DDoS attack detection method based on SVM in software defined network[J]. Security and Communication Networks, 2018, 2018: No.9804061. 10.1155/2018/9804061 | 
| 9 | DONG S, SAREM M. DDoS attack detection method based on improved KNN with the degree of DDoS attack in software-defined networks[J]. IEEE Access, 2020, 8: 5039-5048. 10.1109/access.2019.2963077 | 
| 10 | ZHENG J, LI Q, GU G F, et al. Realtime DDoS defense using COTS SDN switches via adaptive correlation analysis[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(7): 1838-1853. 10.1109/tifs.2018.2805600 | 
| 11 | FOULADI R F, ERMIŞ O, ANARIM E. A DDoS attack detection and defense scheme using time-series analysis for SDN[J]. Journal of Information Security and Applications, 2020, 54: No.102587. 10.1016/j.jisa.2020.102587 | 
| 12 | CAO Y Y, JIANG H, DENG Y C, et al. Detecting and mitigating DDoS attacks in SDN using spatial-temporal graph convolutional network[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(6):3855-3872. 10.1109/tdsc.2021.3108782 | 
| 13 | SAHAY R, BLANC G, ZHANG Z H, et al. Towards autonomic DDoS mitigation using software defined networking[C]// Proceedings of the 2015 NDSS Workshop on Security of Emerging Networking Technologies. Reston, VA: Internet Society, 2015:1-7. 10.14722/sent.2015.23004 | 
| 14 | YANG X R, HAN B, SUN Z G, et al. SDN-based DDoS attack detection with cross-plane collaboration and lightweight flow monitoring[C]// Proceedings of the 2017 IEEE Global Communications Conference. Piscataway: IEEE, 2017: 1-6. 10.1109/glocom.2017.8254079 | 
| 15 | 曹永轶,金伟正,吴静,等. 一种面向SDN的跨平面协作DDoS检测与防御方法[J]. 计算机工程, 2020, 46(11):148-156. | 
| CAO Y Y, JIN W Z, WU J, et al. A DDoS detection and defense method based on cross plane cooperation for SDN[J]. Computer Engineering, 2020, 46(11): 148-156. | |
| 16 | TAN L, PAN Y, WU J, et al. A new framework for DDoS attack detection and defense in SDN environment[J]. IEEE Access, 2020, 8: 161908-161919. 10.1109/access.2020.3021435 | 
| 17 | CHEN K Y, LIU S, XU Y, et al. SDNShield: NFV-based defense framework against DDoS attacks on SDN control plane[J]. IEEE/ACM Transactions on Networking, 2022, 30(1): 1-17. 10.1109/tnet.2021.3105187 | 
| 18 | ADIGA B S, SHASTRY R, CHANDRA M G, et al. A reversible sketch based on Chinese Remainder Theorem: scheme and performance study[J]. International Journal of Computer Science and Network Security, 2011, 11(8): 59-65. | 
| 19 | CORMODE G, MUTHUKRISHNAN M. Approximating data with the count-min sketch[J]. IEEE Software, 2012, 29(1): 64-69. 10.1109/ms.2011.127 | 
| 20 | YANG X, HAN B, SUN Z, et al. SDN-based DDoS attack detection with cross-plane collaboration and lightweight flow monitoring[C]// Proceedings of the 2017 IEEE Global Communications Conference. Piscataway: IEEE, 2017: 1-6. 10.1109/glocom.2017.8254079 | 
| 21 | BOITE J, NARDIN P A, REBECCHI F, et al. StateSec: stateful monitoring for DDoS protection in software defined networks[C]// Proceedings of the 2017 IEEE Conference on Network Softwarization. Piscataway: IEEE, 2017: 1-9. 10.1109/netsoft.2017.8004113 | 
| 22 | YOU X, FENG Y, SAKURAI K. Packet in message based DDoS attack detection in SDN network using openflow[C]// Proceedings of the 5th International Symposium on Computing and Networking. Piscataway: IEEE, 2017: 522-528. 10.1109/candar.2017.93 | 
| 23 | HINTJENS P. ZeroMQ: Messaging for Many Applications[M]. Sebastopol, CA: O’Reilly Media, Inc., 2013: 81-133. | 
| 24 | GHEORGHE L. Designing and Implementing Linux Firewalls and QoS using Netfilter, Iproute2, NAT and L7-filter[M]. Birmingham: Packt Publishing, 2006: 10-23. | 
| 25 | BERTIN G. XDP in practice: integrating XDP into our DDoS mitigation pipeline[C/OL]// Proceedings of the Technical Conference on Linux Networking 2.1 [2022-04-21].. | 
| [1] | 刘向举, 路小宝, 方贤进, 尚林松. 软件定义网络环境下的低速率拒绝服务攻击检测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1301-1307. | 
| [2] | 张立群, 林海涛, 郇文明, 毕文婷. 基于OpenFlow的软件定义网络流规则冲突检测系统[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 528-533. | 
| [3] | 李颖之, 李曼, 董平, 周华春. 基于集成学习的多类型应用层DDoS攻击检测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3775-3784. | 
| [4] | 代荣荣, 李宏慧, 付学良. 基于差分进化融合蚁群算法的数据中心流量调度机制[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3863-3869. | 
| [5] | 陈何雄, 罗宇薇, 韦云凯, 郭威, 杭菲璐, 毛正雄, 张振红, 何映军, 罗震宇, 谢林江, 杨宁. 基于区块链的软件定义网络数据帧安全验证机制[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3074-3083. | 
| [6] | 许红亮, 杨桂芹, 蒋占军. 基于软件定义网络的数据中心自适应多路径负载均衡算法[J]. 计算机应用, 2021, 41(4): 1160-1164. | 
| [7] | 马晓航, 廖灵霞, 李智, 秦斌, 赵涵捷. 基于动态混合超时的软件定义网络多目标优化[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3658-3665. | 
| [8] | 陈港, 孟相如, 康巧燕, 阳勇. 基于拓扑分割与聚类分析的虚拟软件定义网络映射算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3309-3318. | 
| [9] | 王波, 任英琦, 黄冬艳. H-Algorand:基于多块输出的公有链共识机制[J]. 计算机应用, 2020, 40(7): 2150-2154. | 
| [10] | 朱梦迪, 束永安. 软件定义网络中控制数据平面一致性的验证[J]. 计算机应用, 2020, 40(6): 1751-1754. | 
| [11] | 向雄, 田检. 基于软件定义网络的对等网传输调度优化[J]. 计算机应用, 2020, 40(3): 777-782. | 
| [12] | 刘向举, 刘鹏程, 徐辉, 朱晓娟. 基于软件定义物联网的分布式拒绝服务攻击检测方法[J]. 计算机应用, 2020, 40(3): 753-759. | 
| [13] | 赵季红, 吴豆豆, 曲桦, 殷振宇. 基于软件定义网络的可靠性虚拟网络映射保障机制[J]. 计算机应用, 2020, 40(3): 770-776. | 
| [14] | 池亚平, 莫崇维, 杨垠坦, 陈纯霞. 面向软件定义网络架构的入侵检测模型设计与实现[J]. 计算机应用, 2020, 40(1): 116-122. | 
| [15] | 贾梦瑶, 王兴伟, 张爽, 易波, 黄敏. 基于软件定义网络的卫星网络容错路由机制[J]. 计算机应用, 2019, 39(6): 1772-1779. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||