1 |
BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL]. (2019-02-01) [2023-06-13]..
|
2 |
TANG T W, KUO W H, LAN J H, et al. Anomaly detection neural network with dual auto-encoders GAN and its industrial inspection applications[J]. Sensors, 2020, 20(12): No.3336.
|
3 |
AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11363. Cham: Springer, 2019: 622-637.
|
4 |
SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// Proceedings of the 2017 International Conference on Information Processing in Medical Imaging, LNCS 10265. Cham: Springer, 2017: 146-157.
|
5 |
ZENATI H, FOO C S, LECOUAT B, et al. Efficient GAN-based anomaly detection[EB/OL]. [2023-06-12]..
|
6 |
WHEELER B J, KARIMI H A. A semantically driven self-supervised algorithm for detecting anomalies in image sets[J]. Computer Vision and Image Understanding, 2021, 213: No.103279.
|
7 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
|
8 |
ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14298-14308.
|
9 |
COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[EB/OL]. [2023-09-10]..
|
10 |
DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]// Proceedings of the 2021 International Conference on Pattern Recognition, LNCS 12664. Cham: Springer, 2021: 475-489.
|
11 |
HYUN J, KIM S, JEON G, et al. ReConPatch: contrastive patch representation learning for industrial anomaly detection[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 2041-2050.
|
12 |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD — a comprehensive real-world dataset for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9584-9592.
|
13 |
ZAVRTANIK V, KRISTAN M, SKOČAJ D. DRÆM — a discriminatively trained reconstruction embedding for surface anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8310-8319.
|
14 |
LI C L, SOHN K, YOON J, et al. CutPaste: self-supervised learning for anomaly detection and localization[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9659-9669.
|
15 |
SONG J W, KONG K, PARK Y I, et al. AnoSeg: anomaly segmentation network using self-supervised learning[EB/OL]. [2023-08-10]..
|
16 |
LIU Z, ZHOU Y, XU Y, et al. SimpleNet: a simple network for image anomaly detection and localization[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 20402-20411.
|
17 |
YANG M, WU P, FENG H. MemSeg: a semi-supervised method for image surface defect detection using differences and commonalities[J]. Engineering Applications of Artificial Intelligence, 2023, 119: No.105835.
|
18 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.
|
19 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
20 |
SINHA S, ZHANG H, GOYAL A, et al. Small-GAN: speeding up GAN training using core-sets[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9005-9015.
|
21 |
PERLIN K. An image synthesizer[J]. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 287-296.
|
22 |
ZHAO R, QIAN B, ZHANG X, et al. Rethinking Dice loss for medical image segmentation[C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 851-860.
|
23 |
CIMPOI M, MAJI S, KOKKINOS I, et al. Describing textures in the wild[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3606-3613.
|
24 |
FU H, CHENG J, XU Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1597-1605.
|
25 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
26 |
YAO H, ZHU D L, JIANG B, et al. Negative log likelihood ratio loss for deep neural network classification[C]// Proceedings of the 2019 Future Technologies Conference, AISC 1069. Cham: Springer, 2020: 276-282.
|
27 |
YI J, YOON S. Patch SVDD: patch-level SVDD for anomaly detection and segmentation[C]// Proceedings of the 2020 Asian Conference on Computer Vision, LNCS 12627. Cham: Springer, 2021: 375-390.
|
28 |
WANG G, HAN S, DING E, et al. Student-teacher feature pyramid matching for anomaly detection[C]// Proceedings of the 2021 British Machine Vision Conference. Durham: BMVA Press, 2021: No.1273.
|
29 |
BATZNER K, HECKLER L, KÖNIG R. EfficientAD: accurate visual anomaly detection at millisecond-level latencies[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 127-137.
|