《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (10): 3399-3406.DOI: 10.11772/j.issn.1001-9081.2024101404
• 前沿与综合应用 • 上一篇
收稿日期:
2024-10-07
修回日期:
2025-01-08
接受日期:
2025-01-09
发布日期:
2025-01-13
出版日期:
2025-10-10
通讯作者:
彭博
作者简介:
吴松霖(1999—),男,山东莱西人,硕士研究生,CCF会员,主要研究方向:深度学习、计算机视觉基金资助:
Songlin WU1, Guangchao ZHANG2, Yuan YAO3, Bo PENG1()
Received:
2024-10-07
Revised:
2025-01-08
Accepted:
2025-01-09
Online:
2025-01-13
Published:
2025-10-10
Contact:
Bo PENG
About author:
WU Songlin, born in 1999, M. S. candidate. His research interests include deep learning, computer vision.Supported by:
摘要:
困难气道(DA)是临床手术中关键的术前风险因素,但它的准确识别面临诸多挑战,如数据集规模小、类别严重不平衡和单视图识别能力不足等。针对这些问题,提出多视图DA识别模型——DRG-MV-Net(Discriminative Region Guided Multi-View Net)。在模型的第一阶段,判别区域引导模块(DRGM)借助类激活映射(CAM)自动检测并强调面部视图中的关键判别区域,生成2种具有特定特征的数据增强图像;在模型的第二阶段,使用集成扩张卷积块注意模块(D-CBAM)的ResNet-18骨干网络提取每个视图的特征,再通过多视图交叉融合模块(MCFM)进行多视图特征集成。此外,将Focal Loss与分层混合采样相结合,缓解类别不平衡问题。对所构建的临床数据集的评估结果显示,所提模型实现了77.22%的几何平均准确率(G-Mean)、43.88%的F1分数(F1-Score)、38.73%的马修斯相关系数(MCC)和0.740 7的受试者操作特征曲线下面积(AUC)。与近期的DA识别模型MCE-Net(Multi-view Contrastive representation prior and Ensemble classification Network)相比,所提模型的G-Mean、F1-Score和MCC分别提升了2.41、2.34和3.41个百分点;与基线模型ResNet-18相比,分别提升了4.85、6.85和8.25个百分点。以上结果验证了所提模型在小型且不平衡数据集上DA识别的有效性,为解决复杂的DA识别提供了新的见解和方法。
中图分类号:
吴松霖, 张广朝, 姚远, 彭博. 基于判别区域引导的多视图困难气道识别[J]. 计算机应用, 2025, 45(10): 3399-3406.
Songlin WU, Guangchao ZHANG, Yuan YAO, Bo PENG. Multi-view difficult airway recognition based on discriminant region guidance[J]. Journal of Computer Applications, 2025, 45(10): 3399-3406.
方法 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|
PFLD | 60.85±6.66 | 57.78±12.61 | 64.86±4.27 | 26.83±5.57 | 14.92±8.66 |
文献[ | 60.97±6.35 | 61.11±10.80 | 61.29±4.69 | 26.55±4.78 | 14.53±8.10 |
文献[ | 63.68±8.22 | 58.89±11.77 | 69.43±7.38 | 30.46±9.28 | 19.62±12.32 |
文献[ | 64.90±4.08 | 70.00±10.54 | 60.71±4.27 | 29.38±3.09 | 19.78±5.58 |
DMF-Net | 70.18±5.76 | 77.22±7.86 | 68.43±6.30 | 35.06±6.07 | 27.24±8.35 |
MCE-Net | 74.81±7.25 | 75.56±11.48 | 74.71±7.68 | 41.54±9.04 | 35.32±11.76 |
DRG-MV-Net | 77.22±4.90 | 78.89±9.73 | 76.14±7.03 | 43.88±6.33 | 38.73±7.61 |
表1 DRG-MV-Net与先进的多视图DA识别方法的比较 (%)
Tab. 1 Comparison of DRG-MV-Net and advanced methods for multi-view DA recognition
方法 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|
PFLD | 60.85±6.66 | 57.78±12.61 | 64.86±4.27 | 26.83±5.57 | 14.92±8.66 |
文献[ | 60.97±6.35 | 61.11±10.80 | 61.29±4.69 | 26.55±4.78 | 14.53±8.10 |
文献[ | 63.68±8.22 | 58.89±11.77 | 69.43±7.38 | 30.46±9.28 | 19.62±12.32 |
文献[ | 64.90±4.08 | 70.00±10.54 | 60.71±4.27 | 29.38±3.09 | 19.78±5.58 |
DMF-Net | 70.18±5.76 | 77.22±7.86 | 68.43±6.30 | 35.06±6.07 | 27.24±8.35 |
MCE-Net | 74.81±7.25 | 75.56±11.48 | 74.71±7.68 | 41.54±9.04 | 35.32±11.76 |
DRG-MV-Net | 77.22±4.90 | 78.89±9.73 | 76.14±7.03 | 43.88±6.33 | 38.73±7.61 |
模型 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|
AlexNet | 56.45±12.92 | 53.33±20.82 | 62.14±4.87 | 23.74±8.93 | 10.04±14.63 |
VGG-19 | 59.10±11.26 | 56.67±18.48 | 63.29±3.30 | 25.54±8.05 | 12.98±12.99 |
VGG-16 | 64.58±7.29 | 63.33±10.54 | 66.14±5.30 | 30.01±6.21 | 19.55±9.65 |
MobileNetV2 | 61.11±7.05 | 60.00±15.89 | 64.00±6.76 | 27.06±5.10 | 15.73±8.22 |
InceptionV3 | 61.95±7.77 | 62.22±15.00 | 62.86±4.99 | 27.48±5.81 | 16.29±9.35 |
DenseNet | 61.52±7.91 | 63.33±12.88 | 60.29±5.34 | 27.01±6.22 | 15.29±10.23 |
ResNet-50 | 65.68±5.09 | 67.78±8.20 | 63.86±4.21 | 30.33±4.34 | 20.63±6.77 |
ResNet-34 | 65.94±6.16 | 65.56±9.73 | 66.57±3.88 | 30.98±5.46 | 21.24±8.30 |
ResNet-18 | 67.01±6.88 | 68.89±8.76 | 65.29±5.95 | 31.85±6.22 | 22.56±9.47 |
DRG-MV-Net | 77.22±4.90 | 78.89±9.73 | 76.14±7.03 | 43.88±6.33 | 38.73±7.61 |
表2 不同骨干网络的性能对比 (%)
Tab. 2 Performance comparison of different backbone networks
模型 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|
AlexNet | 56.45±12.92 | 53.33±20.82 | 62.14±4.87 | 23.74±8.93 | 10.04±14.63 |
VGG-19 | 59.10±11.26 | 56.67±18.48 | 63.29±3.30 | 25.54±8.05 | 12.98±12.99 |
VGG-16 | 64.58±7.29 | 63.33±10.54 | 66.14±5.30 | 30.01±6.21 | 19.55±9.65 |
MobileNetV2 | 61.11±7.05 | 60.00±15.89 | 64.00±6.76 | 27.06±5.10 | 15.73±8.22 |
InceptionV3 | 61.95±7.77 | 62.22±15.00 | 62.86±4.99 | 27.48±5.81 | 16.29±9.35 |
DenseNet | 61.52±7.91 | 63.33±12.88 | 60.29±5.34 | 27.01±6.22 | 15.29±10.23 |
ResNet-50 | 65.68±5.09 | 67.78±8.20 | 63.86±4.21 | 30.33±4.34 | 20.63±6.77 |
ResNet-34 | 65.94±6.16 | 65.56±9.73 | 66.57±3.88 | 30.98±5.46 | 21.24±8.30 |
ResNet-18 | 67.01±6.88 | 68.89±8.76 | 65.29±5.95 | 31.85±6.22 | 22.56±9.47 |
DRG-MV-Net | 77.22±4.90 | 78.89±9.73 | 76.14±7.03 | 43.88±6.33 | 38.73±7.61 |
图像组合 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|
原始图像 | 67.01±6.88 | 68.89±8.76 | 65.29±5.95 | 31.85±6.22 | 22.56±9.47 |
裁剪 | 71.22±8.94 | 72.22±13.09 | 70.57±6.87 | 36.77±9.40 | 29.17±13.05 |
融合 | 70.47±7.90 | 73.33±15.00 | 68.57±6.87 | 35.44±7.49 | 28.06±10.99 |
原始图像+裁剪 | 70.93±9.69 | 73.33±15.89 | 69.29±6.57 | 36.14±9.46 | 28.72±13.55 |
原始图像+融合 | 68.30±7.68 | 67.78±13.30 | 69.43±4.48 | 33.57±7.07 | 24.96±10.28 |
裁剪+融合 | 72.37±4.84 | 74.44±9.15 | 70.71±5.36 | 37.30±5.25 | 30.48±7.21 |
原图像+裁剪+融合 | 70.61±5.09 | 71.11±10.73 | 70.86±6.87 | 36.03±5.24 | 28.52±7.00 |
表3 不同增强图像组合的性能对比 (%)
Tab. 3 Performance comparison of different enhancement combinations of images
图像组合 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|
原始图像 | 67.01±6.88 | 68.89±8.76 | 65.29±5.95 | 31.85±6.22 | 22.56±9.47 |
裁剪 | 71.22±8.94 | 72.22±13.09 | 70.57±6.87 | 36.77±9.40 | 29.17±13.05 |
融合 | 70.47±7.90 | 73.33±15.00 | 68.57±6.87 | 35.44±7.49 | 28.06±10.99 |
原始图像+裁剪 | 70.93±9.69 | 73.33±15.89 | 69.29±6.57 | 36.14±9.46 | 28.72±13.55 |
原始图像+融合 | 68.30±7.68 | 67.78±13.30 | 69.43±4.48 | 33.57±7.07 | 24.96±10.28 |
裁剪+融合 | 72.37±4.84 | 74.44±9.15 | 70.71±5.36 | 37.30±5.25 | 30.48±7.21 |
原图像+裁剪+融合 | 70.61±5.09 | 71.11±10.73 | 70.86±6.87 | 36.03±5.24 | 28.52±7.00 |
方法 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|
Baseline | 72.37± 4.84 | 74.44± 9.15 | 70.71± 5.36 | 37.30± 5.25 | 30.48± 7.21 |
+CA | 72.18± 5.22 | 73.33± 10.73 | 71.57± 5.10 | 37.33± 4.91 | 30.42± 7.13 |
+SE | 71.63± 7.30 | 74.44± 12.88 | 69.43± 5.18 | 36.36± 6.86 | 29.33± 10.06 |
+EMA | 69.22± 10.03 | 70.00± 15.76 | 69.00± 6.14 | 34.58± 9.30 | 26.25± 13.80 |
+CBAM | 72.67± 6.67 | 74.44± 13.22 | 71.29± 9.30 | 37.69± 7.12 | 31.43± 7.24 |
+D-CBAM | 73.00± 6.19 | 75.56± 12.61 | 71.43± 8.60 | 38.59± 6.56 | 32.18± 8.91 |
表4 不同注意力机制的性能对比 (%)
Tab. 4 Performance comparison of different attention mechanisms
方法 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|
Baseline | 72.37± 4.84 | 74.44± 9.15 | 70.71± 5.36 | 37.30± 5.25 | 30.48± 7.21 |
+CA | 72.18± 5.22 | 73.33± 10.73 | 71.57± 5.10 | 37.33± 4.91 | 30.42± 7.13 |
+SE | 71.63± 7.30 | 74.44± 12.88 | 69.43± 5.18 | 36.36± 6.86 | 29.33± 10.06 |
+EMA | 69.22± 10.03 | 70.00± 15.76 | 69.00± 6.14 | 34.58± 9.30 | 26.25± 13.80 |
+CBAM | 72.67± 6.67 | 74.44± 13.22 | 71.29± 9.30 | 37.69± 7.12 | 31.43± 7.24 |
+D-CBAM | 73.00± 6.19 | 75.56± 12.61 | 71.43± 8.60 | 38.59± 6.56 | 32.18± 8.91 |
D-CBAM | MCFM | Focal Loss | 分层混合采样 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|---|---|---|
72.37±4.84 | 74.44±9.15 | 70.71±5.36 | 37.30±5.25 | 30.48±7.21 | ||||
✓ | 73.00±6.19 | 75.56±12.61 | 71.43±8.60 | 38.59±6.56 | 32.18±8.91 | |||
✓ | 71.76±8.27 | 72.22±13.09 | 72.00±8.28 | 37.84±8.94 | 30.56±11.99 | |||
✓ | 71.90±7.11 | 73.33±10.73 | 70.86±6.77 | 37.31±7.95 | 30.11±10.66 | |||
✓ | 71.43±9.75 | 70.00±15.76 | 73.86±8.30 | 38.24±9.81 | 30.74±13.49 | |||
✓ | ✓ | 73.87±5.80 | 77.78±9.07 | 70.43±5.87 | 38.58±6.41 | 32.45±8.60 | ||
✓ | ✓ | ✓ | 72.96±8.18 | 71.11±11.94 | 75.29±6.97 | 39.96±9.53 | 32.81±12.38 | |
✓ | ✓ | ✓ | 75.03±6.20 | 73.33±9.37 | 77.00±5.36 | 42.15±7.29 | 35.76±9.49 | |
✓ | ✓ | ✓ | 75.09±5.92 | 75.56±10.21 | 75.00±4.91 | 41.14±6.33 | 35.09±8.46 | |
✓ | ✓ | ✓ | 73.27±7.61 | 76.67±11.05 | 70.43±8.08 | 38.59±8.38 | 32.08±11.28 | |
✓ | ✓ | ✓ | ✓ | 77.22±4.90 | 78.89±9.73 | 76.14±7.03 | 43.88±6.33 | 38.73±7.61 |
表5 模块消融实验结果 (%)
Tab. 5 Ablation experimental results of modules
D-CBAM | MCFM | Focal Loss | 分层混合采样 | G-Mean | 灵敏度 | 特异性 | F1-Score | MCC |
---|---|---|---|---|---|---|---|---|
72.37±4.84 | 74.44±9.15 | 70.71±5.36 | 37.30±5.25 | 30.48±7.21 | ||||
✓ | 73.00±6.19 | 75.56±12.61 | 71.43±8.60 | 38.59±6.56 | 32.18±8.91 | |||
✓ | 71.76±8.27 | 72.22±13.09 | 72.00±8.28 | 37.84±8.94 | 30.56±11.99 | |||
✓ | 71.90±7.11 | 73.33±10.73 | 70.86±6.77 | 37.31±7.95 | 30.11±10.66 | |||
✓ | 71.43±9.75 | 70.00±15.76 | 73.86±8.30 | 38.24±9.81 | 30.74±13.49 | |||
✓ | ✓ | 73.87±5.80 | 77.78±9.07 | 70.43±5.87 | 38.58±6.41 | 32.45±8.60 | ||
✓ | ✓ | ✓ | 72.96±8.18 | 71.11±11.94 | 75.29±6.97 | 39.96±9.53 | 32.81±12.38 | |
✓ | ✓ | ✓ | 75.03±6.20 | 73.33±9.37 | 77.00±5.36 | 42.15±7.29 | 35.76±9.49 | |
✓ | ✓ | ✓ | 75.09±5.92 | 75.56±10.21 | 75.00±4.91 | 41.14±6.33 | 35.09±8.46 | |
✓ | ✓ | ✓ | 73.27±7.61 | 76.67±11.05 | 70.43±8.08 | 38.59±8.38 | 32.08±11.28 | |
✓ | ✓ | ✓ | ✓ | 77.22±4.90 | 78.89±9.73 | 76.14±7.03 | 43.88±6.33 | 38.73±7.61 |
[1] | COOK T M, WOODALL N, FRERK C, et al. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. part 1: anaesthesia[J]. British Journal of Anaesthesia, 2011, 106(5): 617-631. |
[2] | PANDIT J J, ANDRADE J, BOGOD D G, et al. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors[J]. British Journal of Anaesthesia, 2014, 113(4): 540-548. |
[3] | CARSETTI A, SORBELLO M, ADRARIO E, et al. Airway ultrasound as predictor of difficult direct laryngoscopy: a systematic review and meta-analysis[J]. Anesthesia and Analgesia, 2022, 134(4): 740-750. |
[4] | AMANITI A, PAPAKONSTANTINOU P, GKINAS D, et al. Comparison of laryngoscopic views between C-MAC™ and conventional laryngoscopy in patients with multiple preoperative prognostic criteria of difficult intubation. an observational cross-sectional study[J]. Medicina, 2019, 55(12): No.760. |
[5] | 王杰,夏明,周韧,等. 可视喉镜暴露声门困难相关面部特征分析[J]. 第二军医大学学报, 2021, 42(12):1382-1387. |
WANG J, XIA M, ZHOU R, et al. Analysis of facial features related to difficult visual laryngoscopic glottis exposure[J]. Academic Journal of the Second Military Medical University, 2021, 42(12):1382-1387. | |
[6] | HEIDEGGER T. Management of the difficult airway[J]. The New England Journal of Medicine, 2021, 384(19): 1836-1847. |
[7] | LAW J A, BROEMLING N, COOPER R M, et al. The difficult airway with recommendations for management — part 2 — the anticipated difficult airway[J]. Canadian Journal of Anaesthesia, 2013, 60(11): 1119-1138. |
[8] | APFELBAUM J L, HAGBERG C A, CONNIS R T, et al. 2022 American Society of Anesthesiologists practice guidelines for management of the difficult airway[J]. Anesthesiology, 2022, 136(1): 31-81. |
[9] | CONNOR C W, SEGAL S. Accurate classification of difficult intubation by computerized facial analysis[J]. Anesthesia and Analgesia, 2011, 112(1): 84-93. |
[10] | CONNOR C W, SEGAL S. The importance of subjective facial appearance on the ability of anesthesiologists to predict difficult intubation[J]. Anesthesia and Analgesia, 2014, 118(2): 419-427. |
[11] | CUENDET G L, SCHOETTKER P, YÜCE A, et al. Facial image analysis for fully automatic prediction of difficult endotracheal intubation[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(2): 328-339. |
[12] | HAYASAKA T, KAWANO K, KURIHARA K, et al. Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: an observational study[J]. Journal of Intensive Care, 2021, 9: No.38. |
[13] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-04-18].. |
[14] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |
[15] | LIN Q, CHNG C B, TOO J, et al. Towards artificial intelligence-enabled medical pre-operative airway assessment[C]// Proceedings of the 2022 IEEE International Conference on E-health Networking, Application and Services. Piscataway: IEEE, 2022: 69-74. |
[16] | TAVOLARA T E, GURCAN M N, SEGAL S, et al. Identification of difficult to intubate patients from frontal face images using an ensemble of deep learning models[J]. Computers in Biology and Medicine, 2021, 136: No.104737. |
[17] | GARCÍA-GARCÍA F, LEE D J, MENDOZA-GARCÉS F J, et al. Automated location of orofacial landmarks to characterize airway morphology in anaesthesia via deep convolutional neural networks[J]. Computer Methods and Programs in Biomedicine, 2023, 232: No.107428. |
[18] | GARCÍA-GARCÍA F, LEE D J, MENDOZA-GARCÉS F J, et al. Reliable prediction of difficult airway for tracheal intubation from patient preoperative photographs by machine learning methods[J]. Computer Methods and Programs in Biomedicine, 2024, 248: No.108118. |
[19] | WANG G, LI C, TANG F, et al. A fully-automatic semi-supervised deep learning model for difficult airway assessment[J]. Heliyon, 2023, 9(5): No.e15629. |
[20] | XIA M, JIN C, ZHENG Y, et al. Deep learning-based facial analysis for predicting difficult videolaryngoscopy: a feasibility study[J]. Anaesthesia, 2024, 79(4): 399-409. |
[21] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
[22] | WU J, YAO Y, ZHANG G, et al. Difficult airway assessment based on multi-view metric learning[J]. Bioengineering, 2024, 11(7): No.703. |
[23] | LI X, PENG B, YAO Y, et al. Difficult airway assessment with multi-view contrastive representation prior and ensemble classification[J]. Biomedical Signal Processing and Control, 2024, 98: No.106738. |
[24] | HO J, SALIMANS T. Classifier-free diffusion guidance[EB/OL]. [2024-04-18].. |
[25] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. |
[26] | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. |
[27] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems — Volume 1. Red Hook: Curran Associates Inc., 2012: 1097-1105. |
[28] | SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. |
[29] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. |
[30] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. |
[31] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2024-04-18].. |
[32] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
[33] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[34] | KRAGE R, VAN RIJN C, VAN GROENINGEN D, et al. Cormack-Lehane classification revisited[J]. British Journal of Anaesthesia, 2010, 105(2): 220-227. |
[35] | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. |
[36] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
[37] | OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
[1] | 李维刚, 邵佳乐, 田志强. 基于双注意力机制和多尺度融合的点云分类与分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3003-3010. |
[2] | 王翔, 陈志祥, 毛国君. 融合局部和全局相关性的多变量时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2806-2816. |
[3] | 许志雄, 李波, 边小勇, 胡其仁. 对抗样本嵌入注意力U型网络的3D医学图像分割[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3011-3016. |
[4] | 王芳, 胡静, 张睿, 范文婷. 内容引导下多角度特征融合医学图像分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3017-3025. |
[5] | 李莉, 宋涵, 刘培鹤, 陈汉林. 基于数据增强和残差网络的敏感信息命名实体识别[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2790-2797. |
[6] | 吕景刚, 彭绍睿, 高硕, 周金. 复频域注意力和多尺度频域增强驱动的语音增强网络[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2957-2965. |
[7] | 梁一鸣, 范菁, 柴汶泽. 基于双向交叉注意力的多尺度特征融合情感分类[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2773-2782. |
[8] | 王闯, 俞璐, 陈健威, 潘成, 杜文博. 开集域适应综述[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2727-2736. |
[9] | 邓伊琳, 余发江. 基于LSTM和可分离自注意力机制的伪随机数生成器[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2893-2901. |
[10] | 周金, 李玉芝, 张徐, 高硕, 张立, 盛家川. 复杂电磁环境下的调制识别网络[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2672-2682. |
[11] | 敬超, 全育涛, 陈艳. 基于多层感知机-注意力模型的功耗预测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2646-2655. |
[12] | 林进浩, 罗川, 李天瑞, 陈红梅. 基于跨尺度注意力网络的胸部疾病分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2712-2719. |
[13] | 习怡萌, 邓箴, 刘倩, 刘立波. 跨模态信息融合的视频-文本检索[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2448-2456. |
[14] | 颜承志, 陈颖, 钟凯, 高寒. 基于多尺度网络与轴向注意力的3D目标检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2537-2545. |
[15] | 吴海峰, 陶丽青, 程玉胜. 集成特征注意力和残差连接的偏标签回归算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2530-2536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||