《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (9): 2993-3002.DOI: 10.11772/j.issn.1001-9081.2024081227
• 多媒体计算与计算机仿真 • 上一篇
收稿日期:2024-09-02
									
				
											修回日期:2024-09-30
									
				
											接受日期:2024-11-04
									
				
											发布日期:2024-11-19
									
				
											出版日期:2025-09-10
									
				
			通讯作者:
					唐晓芬
							作者简介:魏利利(1996—),女,山东济南人,硕士研究生,CCF会员,主要研究方向:小样本目标检测基金资助:
        
                                                                                                            Lili WEI1, Lirong YAN1, Xiaofen TANG1,2( )
)
			  
			
			
			
                
        
    
Received:2024-09-02
									
				
											Revised:2024-09-30
									
				
											Accepted:2024-11-04
									
				
											Online:2024-11-19
									
				
											Published:2025-09-10
									
			Contact:
					Xiaofen TANG   
							About author:WEI Lili, born in 1996, M. S. candidate. Her research interests include few-shot object detection.Supported by:摘要:
小样本目标检测中因为支持样本稀缺且可利用的类别信息不足,所以有效利用有限样本的特征信息尤为重要。通过丰富支持样本和查询样本中可用的语义信息,能够实现查询特征和支持特征更全面的信息匹配,这有助于模型在小样本场景下理解目标类别,进而有效地实现目标检测。因此,提出一种基于空间上下文和像素关系的模型。设计空间上下文学习模块以辅助像素构建局部上下文区域,从而为中心像素获取区域内的像素语义,并丰富图像的特征信息。此外,针对空间上下文容易引入噪声信息的问题,设计像素上下文关系模块以利用图像中的原始特征知识探索像素之间的关系,并构建类内和类间关系映射图,从而纠正空间上下文学习模块容易引入噪声信息的缺陷。实验结果表明,在PASCAL VOC数据集上进行3种划分时,与VFA(Variational Feature Aggregation)相比,所提模型在样本极其稀缺的1-shot设置下的平均精度(AP50)分别提升2.7、2.0和1.3个百分点。在MS COCO数据集上的10-shot和30-shot设置下,与VFA相比,所提模型的AP分别提升0.4和0.6个百分点;与Meta FR-CNN(Meta Faster R-CNN)相比,所提模型的AP50分别提升11.4和8.7个百分点。可见,所提方法通过更有效地利用有限特征信息提升了对新类样本的识别能力,对只能获取极少量样本的特殊场景下的目标检测模型泛化能力的提升具有参考价值。
中图分类号:
魏利利, 闫丽蓉, 唐晓芬. 上下文语义表征和像素关系纠正的小样本目标检测[J]. 计算机应用, 2025, 45(9): 2993-3002.
Lili WEI, Lirong YAN, Xiaofen TANG. Contextual semantic representation and pixel relationship correction for few-shot object detection[J]. Journal of Computer Applications, 2025, 45(9): 2993-3002.
| 方法 | split1 | split2 | split3 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | |
| FSCE[ | 44.2 | 43.8 | 51.4 | 61.9 | 63.4 | 27.3 | 29.5 | 43.5 | 44.2 | 50.2 | 37.2 | 41.9 | 47.5 | 54.6 | 58.5 | 
| Halluc[ | 45.1 | 44.0 | 44.7 | 55.0 | 55.9 | 23.2 | 27.5 | 35.1 | 34.9 | 39.0 | 30.5 | 35.1 | 41.4 | 49.0 | 49.3 | 
| UP-FSOD[ | 43.8 | 47.8 | 50.3 | 55.4 | 61.7 | 31.2 | 30.5 | 41.2 | 42.2 | 48.3 | 35.5 | 39.7 | 43.9 | 50.6 | 53.5 | 
| FADI[ | 50.3 | 54.8 | 54.2 | 59.3 | 63.2 | 30.6 | 35.0 | 40.3 | 42.8 | 48.0 | 45.7 | 49.7 | 49.1 | 55.0 | 59.6 | 
| DeFRCN[ | 53.6 | 57.5 | 61.5 | 64.1 | 60.8 | 30.1 | 38.1 | 47.0 | 53.3 | 47.9 | 48.4 | 50.9 | 52.3 | 54.9 | 57.4 | 
| Meta FR-CNN[ | 43.0 | 54.5 | 60.6 | 66.1 | 65.4 | 27.7 | 35.5 | 46.1 | 47.8 | 51.4 | 40.6 | 46.4 | 53.4 | 59.9 | 58.6 | 
| FCT[ | 49.9 | 57.1 | 57.9 | 63.2 | 67.1 | 27.6 | 34.5 | 43.7 | 49.2 | 51.2 | 39.5 | 54.7 | 52.3 | 57.0 | 58.7 | 
| KFSOD[ | 44.6 | — | 54.4 | 60.9 | 65.8 | 37.8 | — | 43.1 | 48.1 | 50.4 | 34.8 | — | 44.1 | 52.7 | 53.9 | 
| VFA*[ | 54.4 | 63.8 | 64.7 | 68.0 | 68.4 | 40.1 | 48.9 | 53.1 | 52.6 | 54.5 | 48.8 | 57.0 | 59.2 | 62.6 | 63.1 | 
| SCM | 57.1 | 64.8 | 66.3 | 68.0 | 68.8 | 42.1 | 49.0 | 52.6 | 53.1 | 55.6 | 50.1 | 57.8 | 59.7 | 62.7 | 63.5 | 
表1 在VOC数据集上的小样本目标检测性能比较(新类AP50) (%)
Tab. 1 Performance comparison of few-shot object detection on VOC dataset (AP50 for novel classes)
| 方法 | split1 | split2 | split3 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | |
| FSCE[ | 44.2 | 43.8 | 51.4 | 61.9 | 63.4 | 27.3 | 29.5 | 43.5 | 44.2 | 50.2 | 37.2 | 41.9 | 47.5 | 54.6 | 58.5 | 
| Halluc[ | 45.1 | 44.0 | 44.7 | 55.0 | 55.9 | 23.2 | 27.5 | 35.1 | 34.9 | 39.0 | 30.5 | 35.1 | 41.4 | 49.0 | 49.3 | 
| UP-FSOD[ | 43.8 | 47.8 | 50.3 | 55.4 | 61.7 | 31.2 | 30.5 | 41.2 | 42.2 | 48.3 | 35.5 | 39.7 | 43.9 | 50.6 | 53.5 | 
| FADI[ | 50.3 | 54.8 | 54.2 | 59.3 | 63.2 | 30.6 | 35.0 | 40.3 | 42.8 | 48.0 | 45.7 | 49.7 | 49.1 | 55.0 | 59.6 | 
| DeFRCN[ | 53.6 | 57.5 | 61.5 | 64.1 | 60.8 | 30.1 | 38.1 | 47.0 | 53.3 | 47.9 | 48.4 | 50.9 | 52.3 | 54.9 | 57.4 | 
| Meta FR-CNN[ | 43.0 | 54.5 | 60.6 | 66.1 | 65.4 | 27.7 | 35.5 | 46.1 | 47.8 | 51.4 | 40.6 | 46.4 | 53.4 | 59.9 | 58.6 | 
| FCT[ | 49.9 | 57.1 | 57.9 | 63.2 | 67.1 | 27.6 | 34.5 | 43.7 | 49.2 | 51.2 | 39.5 | 54.7 | 52.3 | 57.0 | 58.7 | 
| KFSOD[ | 44.6 | — | 54.4 | 60.9 | 65.8 | 37.8 | — | 43.1 | 48.1 | 50.4 | 34.8 | — | 44.1 | 52.7 | 53.9 | 
| VFA*[ | 54.4 | 63.8 | 64.7 | 68.0 | 68.4 | 40.1 | 48.9 | 53.1 | 52.6 | 54.5 | 48.8 | 57.0 | 59.2 | 62.6 | 63.1 | 
| SCM | 57.1 | 64.8 | 66.3 | 68.0 | 68.8 | 42.1 | 49.0 | 52.6 | 53.1 | 55.6 | 50.1 | 57.8 | 59.7 | 62.7 | 63.5 | 
| 方法 | 10-shot | 30-shot | ||||
|---|---|---|---|---|---|---|
| AP | AP | |||||
| LSTD[ | 3.2 | 8.1 | 2.1 | 6.7 | 15.8 | 5.1 | 
| FSRW[ | 5.6 | 12.3 | 4.6 | 9.1 | 19.0 | 7.6 | 
| MetaDet[ | 7.1 | 14.6 | 6.1 | 11.3 | 21.7 | 8.1 | 
| Meta R-CNN[ | 8.7 | 19.1 | 6.6 | 12.4 | 25.3 | 10.8 | 
| TFA w/cos[ | 10.0 | — | 9.3 | 13.7 | — | 13.4 | 
| Attention RPN[ | 11.1 | 20.4 | 10.6 | — | — | — | 
| Viewpoint[ | 12.5 | 27.3 | 9.8 | 14.7 | 30.6 | 12.2 | 
| MPSR[ | 9.8 | 17.9 | 9.7 | 14.1 | 25.4 | 14.2 | 
| CME[ | 15.1 | 24.6 | 16.4 | 16.9 | 28.0 | 17.8 | 
| Meta FR-CNN[ | 12.7 | 25.7 | 10.8 | 16.6 | 31.8 | 15.8 | 
| VFA*[ | 16.2 | — | — | 18.9 | — | — | 
| SCM | 16.6 | 37.1 | 13.2 | 19.5 | 40.5 | 16.9 | 
表2 在COCO数据集上新类的检测性能比较 (%)
Tab. 2 Comparison of detection performance for novel classes on COCO dataset
| 方法 | 10-shot | 30-shot | ||||
|---|---|---|---|---|---|---|
| AP | AP | |||||
| LSTD[ | 3.2 | 8.1 | 2.1 | 6.7 | 15.8 | 5.1 | 
| FSRW[ | 5.6 | 12.3 | 4.6 | 9.1 | 19.0 | 7.6 | 
| MetaDet[ | 7.1 | 14.6 | 6.1 | 11.3 | 21.7 | 8.1 | 
| Meta R-CNN[ | 8.7 | 19.1 | 6.6 | 12.4 | 25.3 | 10.8 | 
| TFA w/cos[ | 10.0 | — | 9.3 | 13.7 | — | 13.4 | 
| Attention RPN[ | 11.1 | 20.4 | 10.6 | — | — | — | 
| Viewpoint[ | 12.5 | 27.3 | 9.8 | 14.7 | 30.6 | 12.2 | 
| MPSR[ | 9.8 | 17.9 | 9.7 | 14.1 | 25.4 | 14.2 | 
| CME[ | 15.1 | 24.6 | 16.4 | 16.9 | 28.0 | 17.8 | 
| Meta FR-CNN[ | 12.7 | 25.7 | 10.8 | 16.6 | 31.8 | 15.8 | 
| VFA*[ | 16.2 | — | — | 18.9 | — | — | 
| SCM | 16.6 | 37.1 | 13.2 | 19.5 | 40.5 | 16.9 | 
| 划分 | 阶段 | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 
|---|---|---|---|---|---|---|
| split1 | 基础训练 | 53.9 | 64.1 | 65.2 | 67.3 | 68.6 | 
| 微调训练 | 57.1 | 64.8 | 66.3 | 68.0 | 68.8 | |
| split2 | 基础训练 | 37.7 | 46.8 | 50.2 | 49.2 | 52.6 | 
| 微调训练 | 42.1 | 49.0 | 52.6 | 53.1 | 55.6 | |
| split3 | 基础训练 | 51.1 | 54.6 | 58.6 | 61.7 | 62.7 | 
| 微调训练 | 50.1 | 57.8 | 59.7 | 62.7 | 63.5 | 
表3 在模型不同训练阶段加入先验空间上下文方法的AP50比较 (%)
Tab. 3 Comparison of AP50 of adding prior spatial context method at different model training stages
| 划分 | 阶段 | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 
|---|---|---|---|---|---|---|
| split1 | 基础训练 | 53.9 | 64.1 | 65.2 | 67.3 | 68.6 | 
| 微调训练 | 57.1 | 64.8 | 66.3 | 68.0 | 68.8 | |
| split2 | 基础训练 | 37.7 | 46.8 | 50.2 | 49.2 | 52.6 | 
| 微调训练 | 42.1 | 49.0 | 52.6 | 53.1 | 55.6 | |
| split3 | 基础训练 | 51.1 | 54.6 | 58.6 | 61.7 | 62.7 | 
| 微调训练 | 50.1 | 57.8 | 59.7 | 62.7 | 63.5 | 
| 组件 | SCL-Q | SCL-S | PCR | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 
|---|---|---|---|---|---|---|---|---|
| VFA | 54.4 | 63.8 | 64.7 | 68.0 | 68.4 | |||
| SCM | √ | 55.6 | 64.2 | 65.0 | 68.5 | 68.6 | ||
| √ | 55.7 | 64.3 | 64.6 | 68.2 | 68.3 | |||
| √ | 56.3 | 64.1 | 64.9 | 68.3 | 68.5 | |||
| √ | √ | 55.7 | 64.2 | 65.0 | 68.5 | 68.6 | ||
| √ | √ | 56.7 | 64.5 | 65.8 | 68.3 | 68.6 | ||
| √ | √ | √ | 57.1 | 64.8 | 66.3 | 68.0 | 68.8 | 
表4 模型各组件的影响(AP50) (%)
Tab. 4 Influence of different model components (AP50)
| 组件 | SCL-Q | SCL-S | PCR | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 
|---|---|---|---|---|---|---|---|---|
| VFA | 54.4 | 63.8 | 64.7 | 68.0 | 68.4 | |||
| SCM | √ | 55.6 | 64.2 | 65.0 | 68.5 | 68.6 | ||
| √ | 55.7 | 64.3 | 64.6 | 68.2 | 68.3 | |||
| √ | 56.3 | 64.1 | 64.9 | 68.3 | 68.5 | |||
| √ | √ | 55.7 | 64.2 | 65.0 | 68.5 | 68.6 | ||
| √ | √ | 56.7 | 64.5 | 65.8 | 68.3 | 68.6 | ||
| √ | √ | √ | 57.1 | 64.8 | 66.3 | 68.0 | 68.8 | 
| 分支 | 范围选择 | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 
|---|---|---|---|---|---|---|
| 查询分支 | Q:9 | 53.4 | 63.2 | 64.8 | 67.8 | 68.7 | 
| Q:11 | 54.5 | 63.0 | 64.7 | 67.9 | 68.2 | |
| Q:13 | 54.1 | 63.6 | 64.9 | 68.4 | 68.1 | |
| Q:15 | 55.1 | 63.4 | 64.9 | 68.8 | 69.0 | |
| 支持分支 | S:5 | 54.1 | 62.9 | 65.0 | 67.9 | 68.1 | 
| S:7 | 52.1 | 62.3 | 64.5 | 67.7 | 67.9 | |
| S:9 | 53.5 | 63.3 | 64.5 | 68.2 | 68.2 | |
| 双分支 | Q:11,S:5 | 55.7 | 63.7 | 64.6 | 68.3 | 68.1 | 
| Q:11,S:7 | 54.1 | 63.5 | 64.8 | 67.8 | 68.7 | |
| Q:11,S:9 | 57.1 | 64.9 | 66.2 | 68.1 | 68.5 | |
| Q:11,S:11 | 56.4 | 64.5 | 65.1 | 67.8 | 68.4 | |
| Q:13,S:5 | 55.3 | 64.0 | 64.8 | 67.7 | 68.4 | |
| Q:13,S:7 | 55.3 | 63.4 | 64.2 | 67.5 | 68.3 | |
| Q:13,S:9 | 55.0 | 63.5 | 64.9 | 69.0 | 68.2 | 
表5 SCL模块中不同空间范围选择的结果对比(AP50) (%)
Tab. 5 Comparison results of selecting different spatial ranges in SCL module (AP50)
| 分支 | 范围选择 | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 
|---|---|---|---|---|---|---|
| 查询分支 | Q:9 | 53.4 | 63.2 | 64.8 | 67.8 | 68.7 | 
| Q:11 | 54.5 | 63.0 | 64.7 | 67.9 | 68.2 | |
| Q:13 | 54.1 | 63.6 | 64.9 | 68.4 | 68.1 | |
| Q:15 | 55.1 | 63.4 | 64.9 | 68.8 | 69.0 | |
| 支持分支 | S:5 | 54.1 | 62.9 | 65.0 | 67.9 | 68.1 | 
| S:7 | 52.1 | 62.3 | 64.5 | 67.7 | 67.9 | |
| S:9 | 53.5 | 63.3 | 64.5 | 68.2 | 68.2 | |
| 双分支 | Q:11,S:5 | 55.7 | 63.7 | 64.6 | 68.3 | 68.1 | 
| Q:11,S:7 | 54.1 | 63.5 | 64.8 | 67.8 | 68.7 | |
| Q:11,S:9 | 57.1 | 64.9 | 66.2 | 68.1 | 68.5 | |
| Q:11,S:11 | 56.4 | 64.5 | 65.1 | 67.8 | 68.4 | |
| Q:13,S:5 | 55.3 | 64.0 | 64.8 | 67.7 | 68.4 | |
| Q:13,S:7 | 55.3 | 63.4 | 64.2 | 67.5 | 68.3 | |
| Q:13,S:9 | 55.0 | 63.5 | 64.9 | 69.0 | 68.2 | 
| 类别 | VFA | SCM | 类别 | VFA | SCM | 
|---|---|---|---|---|---|
| bicycle | 78.4 | 81.4 | diningtable | 40.4 | 48.2 | 
| car | 76.7 | 79.4 | horse | 83.9 | 84.2 | 
| boat | 66.3 | 67.1 | sheep | 75.2 | 76.1 | 
| cat | 86.1 | 87.2 | tvmonitor | 52.2 | 56.0 | 
| chair | 10.8 | 18.6 | 
表6 1-shot设置下的基类精度对比 (%)
Tab. 6 Comparison of base class precision under 1-shot setting
| 类别 | VFA | SCM | 类别 | VFA | SCM | 
|---|---|---|---|---|---|
| bicycle | 78.4 | 81.4 | diningtable | 40.4 | 48.2 | 
| car | 76.7 | 79.4 | horse | 83.9 | 84.2 | 
| boat | 66.3 | 67.1 | sheep | 75.2 | 76.1 | 
| cat | 86.1 | 87.2 | tvmonitor | 52.2 | 56.0 | 
| chair | 10.8 | 18.6 | 
| 类别 | VFA | SCM | 类别 | VFA | SCM | 
|---|---|---|---|---|---|
| bird | 47.2 | 49.2 | motorbike | 69.2 | 70.6 | 
| bus | 62.2 | 63.1 | sofa | 37.5 | 40.0 | 
| cow | 59.0 | 62.5 | 
表7 1-shot设置下的新类精度对比 (%)
Tab. 7 Comparison of novel class precision under 1-shot setting
| 类别 | VFA | SCM | 类别 | VFA | SCM | 
|---|---|---|---|---|---|
| bird | 47.2 | 49.2 | motorbike | 69.2 | 70.6 | 
| bus | 62.2 | 63.1 | sofa | 37.5 | 40.0 | 
| cow | 59.0 | 62.5 | 
| 特征 | 1-shot | 2-shot | 3-shot | 4-shot | 5-shot | 
|---|---|---|---|---|---|
| Context Feature | 56.4 | 64.3 | 66.3 | 68.3 | 68.6 | 
| Initial Feature | 57.1 | 64.8 | 66.3 | 68.0 | 68.8 | 
表8 不同特征的像素上下文关系计算的AP50对比 (%)
Tab. 8 Comparison of AP50 for pixel context relationships with different features
| 特征 | 1-shot | 2-shot | 3-shot | 4-shot | 5-shot | 
|---|---|---|---|---|---|
| Context Feature | 56.4 | 64.3 | 66.3 | 68.3 | 68.6 | 
| Initial Feature | 57.1 | 64.8 | 66.3 | 68.0 | 68.8 | 
| [1] | ZHANG Y, WEI X S, ZHOU B, et al. Bag of tricks for long-tailed visual recognition with deep convolutional neural networks [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3447-3455. | 
| [2] | WANG C, LI Z, MO X, et al. Exploiting unfairness with meta-Set learning for chronological age estimation [J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5678-5690. | 
| [3] | 史燕燕,史殿习,乔子腾,等. 小样本目标检测研究综述[J]. 计算机学报, 2023, 46(8): 1753-1780. | 
| SHI Y Y, SHI D X, QIAO Z T, et al. A survey on recent advances in few-shot object detection[J]. Chinese Journal of Computers, 2023, 46(8): 1753-1780. | |
| [4] | SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7348-7358. | 
| [5] | WU A, HAN Y, ZHU L, et al. Universal-prototype enhancing for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9547-9556. | 
| [6] | CHEN H, WANG Y, WANG G, et al. LSTD: a low-shot transfer detector for object detection [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 2836-2843. | 
| [7] | SHANGGUAN Z, SEITA D, ROSTAMI M. Cross-domain multi-modal few-shot object detection via rich text [C]// Proceedings of the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2025: 6570-6580. | 
| [8] | FU Y, WANG Y, PAN Y, et al. Cross-domain few-shot object detection via enhanced open-set object detector [C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15116. Cham: Springer, 2025: 247-264. | 
| [9] | CAO Y, WANG J, JIN Y, et al. Few-shot object detection via association and discrimination [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 16570-16581. | 
| [10] | ZHANG S, WANG L, MURRAY N, et al. Kernelized few-shot object detection with efficient integral aggregation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 19185-19194. | 
| [11] | KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428. | 
| [12] | 李鸿天,史鑫昊,潘卫国,等. 融合多尺度和注意力机制的小样本目标检测[J].计算机应用, 2024, 44(5):1437-1444. | 
| LI H T, SHI X H, PAN W G, et al. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5):1437-1444. | |
| [13] | CHEN T I, LIU Y C, SU H T, et al. Dual-awareness attention for few-shot object detection [J]. IEEE Transactions on Multimedia, 2023, 25: 291-301. | 
| [14] | LI B, WANG C, REDDY P, et al. AirDet: few-shot detection without fine-tuning for autonomous exploration [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13699. Cham: Springer, 2022: 427-444. | 
| [15] | ZHANG X, CHEN Z, ZHANG J, et al. Learning general and specific embedding with Transformer for few-shot object detection[J]. International Journal of Computer Vision, 2025, 133(2): 968-984. | 
| [16] | LI W, ZHOU J, LI X, et al. InfRS: incremental few-shot object detection in remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5644314. | 
| [17] | MA J, NIU Y, XU J, et al. DiGeo: discriminative geometry-aware learning for generalized few-shot object detection [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3208-3218. | 
| [18] | CHEN H, WANG Q, XIE K, et al. MPF-Net: multi-projection filtering network for few-shot object detection [J]. Applied Intelligence, 2024, 54(17/18): 7777-7792. | 
| [19] | LI B, YANG B, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7359-7368. | 
| [20] | 李新叶,侯晔凝,孔英会,等. 结合特征融合与增强注意力的少样本目标检测[J]. 计算机应用, 2024, 44(3):745-751. | 
| LI X Y, HOU Y N, KONG Y H, et al. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3):745-751. | |
| [21] | HAN G, MA J, HUANG S, et al. Few-shot object detection with fully cross-Transformer [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5321-5330. | 
| [22] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 213-229. | 
| [23] | FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4012-4021. | 
| [24] | SHANGGUAN Z, ROSTAMI M. Improved region proposal network for enhanced few-shot object detection [J]. Neural Networks, 2024, 180: No.106699. | 
| [25] | CHOI T M, KIM J H. Incremental few-shot object detection via simple fine-tuning approach [C]// Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 9289-9295. | 
| [26] | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9919-9928. | 
| [27] | HU H, BAI S, LI A, et al. Dense relation distillation with context-aware aggregation for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10180-10189. | 
| [28] | QIAO L, ZHAO Y, LI Z, et al. DeFRCN: decoupled Faster R-CNN for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8661-8670. | 
| [29] | WANG Y X, RAMANAN D, HEBERT M. Meta-learning to detect rare objects [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9924-9933. | 
| [30] | ZHANG G, LUO Z, CUI K, et al. Meta-DETR: image-level few-shot object detection with inter-class correlation exploitation [J]. Neural Networks, 2023, 45(11): 12832-12843. | 
| [31] | ZHU X, SU W, LU L, et al. Deformable DETR: deformable Transformers for end-to-end object detection [EB/OL]. [2024-05-18]. . | 
| [32] | WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 456-472. | 
| [33] | HAN J, REN Y, DING J, et al. Few-shot object detection via variational feature aggregation [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 755-763. | 
| [34] | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-05-24]. . | 
| [35] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 91-99. | 
| [36] | WANG Z, YANG B, YUE H, et al. Fine-grained prototypes distillation for few-shot object detection [C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 5859-5866. | 
| [37] | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge [J]. International Journal of Computer Vision, 2010, 88(2): 303-338. | 
| [38] | CHEN X, FANG H, LIN T Y, et al. Microsoft COCO captions: data collection and evaluation server [EB/OL]. [2024-05-21].. | 
| [39] | OpenMMLab. OpenMMLab few shot learning toolbox and benchmark [EB/OL]. [2024-06-18].. | 
| [40] | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. | 
| [41] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
| [42] | ZHANG W, WANG Y X. Hallucination improves few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13003-13012. | 
| [43] | HAN G, HUANG S, MA J, et al. Meta Faster R-CNN: towards accurate few-shot object detection with attentive feature alignment[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 780-789. | 
| [44] | YAN X, CHEN Z, XU A, et al. Meta R-CNN: towards general solver for instance-level low-shot learning [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9576-9585. | 
| [45] | XIAO Y, LEPETIT V, MARLET R. Few-shot object detection and Viewpoint estimation for objects in the wild [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3090-3106. | 
| [1] | 张嘉祥, 李晓明, 张佳慧. 结合新类特征增强与度量机制的小样本目标检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2984-2992. | 
| [2] | 李鸿天, 史鑫昊, 潘卫国, 徐成, 徐冰心, 袁家政. 融合多尺度和注意力机制的小样本目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1437-1444. | 
| [3] | 付可意, 王高才, 邬满. 基于改进区域提议网络和特征聚合小样本目标检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3790-3797. | 
| [4] | 林润超, 黄荣, 董爱华. 基于注意力机制和元特征二次重加权的小样本目标检测[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3025-3032. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||