计算机应用 ›› 2013, Vol. 33 ›› Issue (11): 3045-3048.
王红梅1,2,胡明2
Wang Hongmei1,2,HU Ming1
摘要: Apriori算法是频繁项集挖掘的经典算法。针对Apriori算法的剪枝操作和多次扫描数据集的缺点,提出了基于散列的频繁项集分组(HFG)算法。证明了2-项集剪枝性质,采用散列技术存储频繁2-项集,将Apriori算法剪枝操作的时间复杂度从O(k×|Lk|)降低到O(1);定义了首项的子项集概念,将数据集划分为以Ii为首项的数据子集并采用分组索引表存储,在求以Ii为首项的频繁项集时,只扫描以Ii为首项的数据子集,减少了对数据集扫描的时间代价。实验结果表明,由于HFG算法的剪枝操作产生了累积效益,以及分组扫描排除了无效的项集和元组,使得HFG算法在时间性能方面与Apriori算法相比有较大提高。
中图分类号: