《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (2): 391-397.DOI: 10.11772/j.issn.1001-9081.2021122190
所属专题: 数据科学与技术
Yaling XUN1, Linqing WANG1, Jianghui CAI1,2(), Haifeng YANG1
摘要:
针对动态时序数据部分周期模式挖掘过程存在的计算复杂度过高和扩展性差等问题,提出了一种结合多尺度理论的时间序列部分周期模式挖掘算法(MSI-PPPGrowth),所提算法充分利用了时序数据客观存在的时间多尺度特性,将多尺度理论引入时序数据的部分周期模式挖掘过程。首先,将尺度划分后的原始数据以及增量时序数据作为更细粒度的基准尺度数据集进行独立挖掘;然后,利用不同尺度数据间的相关性实现尺度转换,以间接获取动态更新后的数据集对应的全局频繁模式,从而避免了原始数据集的重复扫描和树结构的不断调整。其中,基于克里金法并考虑时序周期性设计了一个新的频繁缺失计数估计模型(PJK-EstimateCount),以有效估计在尺度转换过程中的缺失项支持度计数。实验结果表明,MSI-PPPGrowth具有良好的可扩展性和实时性,尤其是对于稠密数据集,其性能优势更为突出。
中图分类号: