计算机应用 ›› 2013, Vol. 33 ›› Issue (11): 3076-3079.
杨武,李阳,卢玲
摘要: 针对在海量微博数据中提取热点话题效率较低的问题,在对用户角色分类的基础上,提出了一种新的热点话题检测方法。首先,根据用户关注度进行用户角色定位,过滤掉部分用户的噪声数据;其次,采用结合语义相似度的TF-IDF函数计算特征权重,降低语义表达形式带来的误差;然后,用改进的Single-Pass聚类算法进行话题聚类,提取出微博话题;最后,根据微博转发数、评论数等对话题热度进行评估排序,从而发现热点话题。实验表明,所提出的方法使漏检率和误检率分别平均降低12.09%和2.37%,有效地提高了话题检测的正确率,验证了该方法的可行性。
中图分类号: