计算机应用 ›› 2016, Vol. 36 ›› Issue (5): 1356-1361.DOI: 10.11772/j.issn.1001-9081.2016.05.1356

• 虚拟现实与数字媒体 • 上一篇    下一篇

采用量化离散余弦变换系数检测视频单帧连续多次复制粘贴篡改

林晶1,2, 黄添强3,4, 赖玥聪1,2, 卢贺楠1,2   

  1. 1. 福建师范大学 数学与计算机科学学院, 福州 350007;
    2. 福建师范大学 网络安全与密码技术福建省高校重点实验室, 福州 350007;
    3. 福建师范大学 软件学院, 福州 350007;
    4. 福建师范大学 大数据分析与应用福建省高校工程研究中心, 福州 350007
  • 收稿日期:2015-12-01 修回日期:2015-12-18 出版日期:2016-05-10 发布日期:2016-05-09
  • 通讯作者: 黄添强
  • 作者简介:林晶(1992-),女,福建莆田人,硕士研究生,主要研究方向:数据挖掘、视频篡改检测;黄添强(1971-),男,福建莆田人,教授,博士,主要研究方向:机器学习、数据挖掘、多媒体篡改检测;赖玥聪(1991-),男,江西赣州人,硕士研究生,主要研究方向:图像篡改检测、数据挖掘;卢贺楠(1988-),男,安徽霍邱人,硕士研究生,主要研究方向:机器学习、视频篡改检测。
  • 基金资助:
    国家自然科学基金资助项目(61070062);福建省高校产学合作科技重大项目(2015H6007);福州市科技计划项目(2014-G-76);福建省高等学校新世纪优秀人才支持计划项目(JA Il038);福建省科学厅K类基金资助项目(JK 2011007);福建省教育厅A类基金资助项目(JA10064);福建师范大学研究生教育改革研究项目(MY201414)。

Detection of continuously and repeated copy-move forgery to single frame in videos by quantized DCT coefficients

LIN Jing1,2, HUANG Tianqiang3,4, LAI Yueicong1,2, LU Henan1,2   

  1. 1. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou Fujian 350007, China;
    2. Fujian Provincial University Key Laboratory of Network Security and Cryptography, Fujian Normal University, Fuzhou Fujian 350007, China;
    3. Faculty of Software, Fujian Normal University, Fuzhou Fujian 350007, China;
    4. Fujian Provincial University Engineering Research Center of Big Data Analysis and Application, Fujian Normal University, Fuzhou Fujian 350007, China
  • Received:2015-12-01 Revised:2015-12-18 Online:2016-05-10 Published:2016-05-09
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61070062), Industry-University Cooperation Major Projects in Fujian Province (2015H6007), Science and Technology Program of Fuzhou City (2014-G-76), Program for New Century Excellent Talents of University in Fujian Province (JAI1038), the K-class Foundation Project Science and Technology Department of Fujian (JK2011007), the A-class Foundation Project of Education Department of Fujian (JA10064), the Graduate Education Reform Research Project of Fujian Normal University (MY201414).

摘要: 目前大多数时域视频帧复制粘贴篡改检测算法都是针对至少20帧以上的视频子序列的复制粘贴篡改,而对单帧复制粘贴篡改无法判断。而根据人眼视觉感知的特性,修改视频内容需要至少15帧以上的帧操作,因此篡改帧想通过单帧复制粘贴篡改来达到想要的效果,必须进行连续多次粘贴操作。为了检测这种篡改方式,针对性地提出了一种基于量化离散余弦变换(DCT)系数的视频单帧连续多次复制-粘贴篡改检测算法。首先,将视频转换为图像,采用量化后的DCT系数作为视频帧图像特征向量,并通过计算巴氏(Bhattacharyya)系数来衡量两相邻帧帧间相似度;再设定阈值来判断两相邻帧帧间相似度是否有异常,最后根据出现相似度异常的帧是否连续,以及连续出现的帧数来判断视频是否经过篡改,并定位篡改位置。实验结果表明,所提算法对不同场景的视频都能检测,不仅检测速度快,而且不受再压缩因素影响,算法的正确率高、漏检率低。

关键词: 视频篡改检测, 单帧复制粘贴, 离散余弦变换, 帧间相似度, Bhattacharyya系数

Abstract: Most existing detection algorithms of video frame copy-move forgery in time domain were designed for the copy-move forgery of video sequence containing 20 frames at least, and are difficult to detect single frame forgery. While according to the characteristics of human visual perception, 15 frames at least were needed to modify the video meaning. So when goal in vision was made by the tampering, continuous operation and many times were needed. In order to detect the tampering, a detection algorithm based on quantized Discrete Cosine Transform (DCT) coefficients for continuous and repeated single frame copy-move forgery in videos was proposed. Firstly, the video was converted into images, and quantized DCT coefficients were taken as the feature vector of a frame image. Then, the similarity between frames was measured by calculating Bhattacharyya coefficient, and threshold was set to judge the abnormal similarity between two adjacent frames. Finally, whether the video was tampered and the tampered positions were determined by the continuity of frames with abnormal similarity and the number of continuous frames. The experimental results show that the proposed algorithm can detect the video with different scenarios, it possesses fast detection speed, and is not affected by further compression factors, but also is of high accuracy and low omission ratio.

Key words: video tampering detection, single frame copy-move, Discrete Cosine Transform (DCT), intra-frame similarity, Bhattacharyya coefficient

中图分类号: