[1] 童庆禧,张兵,张立福.中国高光谱遥感的前沿进展[J].遥感学报,2016,20(5):689-707.(TONG Q X, ZHANG B, ZHANG L F. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707.) [2] LI J, MARPU P R, PLAZA A, et al. Generalized composite kernel framework for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(9):4816-4829. [3] NASRABADI N M. Hyperspectral target detection:an overview of current and future challenges[J]. IEEE Signal Processing Magazine, 2013, 31(1):34-44. [4] LI W, DU Q, ZHANG B. Combined sparse and collaborative representation for hyperspectral target detection[J]. Pattern Recognition, 2015, 48(12):3904-3916. [5] SAMANIEGO L, BÁRDOSSY A, SCHULZ K. Supervised classification of remotely sensed imagery using a modified k-NN technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):2112-2125. [6] CRAWFORD M M, MA L, KIM W. Exploring nonlinear manifold learning for classification of hyperspectral data[M]//Optical Remote Sensing. Berlin:Springer, 2011:207-234. [7] ZHANG L, ZHANG L, TAO D, et al. On combining multiple features for hyperspectral remote sensing image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(3):879-893. [8] ZHANG L, ZHANG L, DU B. Deep learning for remote sensing data:a technical tutorial on the state of the art[J]. IEEE Geoscience & Remote Sensing Magazine, 2016, 4(2):22-40. [9] ZHAO W, DU S. Spectral-spatial feature extraction for hyperspectral image classification:a dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(8):4544-4554. [10] YUE J, ZHAO W, MAO S, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(6):468-477. [11] MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//Proceedings of the 2015 Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2015:4959-4962. [12] CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(10):6232-6251. [13] LIU Q, ZHOU F, HANG R, et al. Bidirectional-convolutional LSTM based spectral-spatial feature learning for hyperspectral image classification[J]. Remote Sensing, 2017, 9(12):1330. [14] YANG J, ZHAO Y, CHAN C W, et al. Hyperspectral image classification using two-channel deep convolutional neural network[C]//Proceedings of the 2016 Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2016:5079-5082. [15] ZHANG H, LI Y, ZHANG Y, et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network[J]. Remote Sensing Letters, 2017, 8(5):438-447. [16] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//ICCV 2015:Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1449-1457. [17] GAO Y, BEIJBOM O, ZHANG N, et al. Compact bilinear pooling[C]//Proceedings of the 2016 Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:317-326. [18] TENENBAUM J B, FREEMAN W T. Separating style and content with bilinear models[J]. Neural Computation, 2014, 12(6):1247-1283. [19] PHAM N, PAGH R. Fast and scalable polynomial kernels via explicit feature maps[C]//Proceedings of the 2013 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2013:239-247. [20] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe:convolutional architecture for fast feature embedding[C]//MM'14:Proceedings of the 22nd ACM International Conference on Multimedia. New York:ACM, 2014:675-678. |