[1] 赵立东. 面向文本情感分类的非平衡数据采样方法研究[D]. 太原:山西大学, 2013. (ZHAO L D. Research on imbalanced data sampling methods for text sentiment classification[D]. Taiyuan:Shanxi University, 2013.) [2] 田锋, 兰田, CHAO Kuo-Ming, 等. 领域实例迁移的交互文本非平衡情感分类方法[J]. 西安交通大学学报, 2015, 49(4):67-72. (TIAN F, LAN T, CHAO K-M, et al. An unbalanced emotion classification method foe interactive texts based on multiple-domain instance transfer[J]. Journal of Xi'an Jiaotong University, 2015, 49(4):67-72.) [3] 王中卿. 基于不平衡数据的情感分类方法研究[D]. 苏州:苏州大学,2012. (WANG Z Q. Research on sentiment classification based-upon imbalanced data[D]. Soochow:Soochow University, 2012.) [4] 王杰, 李德玉, 王素格. 面向非平衡文本情感分类的TSF特征选择方法[J]. 计算机科学, 2016, 43(10):206-210. (WANG J, LI D Y, WANG S G. TSF feature selection method for imbalanced text sentiment classification[J]. Computer Science, 2016, 43(10):206-210.) [5] WASIKOWSKI M, CHEN X. Combating the small sample class imbalance problem using feature selection[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10):1388-1400. [6] YIN L, GE Y, XIAO K. et al. Feature selection for high-dimensional imbalanced data[J]. Neurocomputing, 2013, 105(4):3-11. [7] YU H, WANG X, WANG G. A semi-supervised three-way clustering framework for multi-view data[C]//IJCRS 2017:International Joint Conference on Rough Sets. Berlin:Springer, 2017:313-325. [8] 张梅山,邓知龙,车万翔,等.统计与词典相结合的领域自适应中文分词[J].中文信息学报, 2012, 26(2):8-12. (ZHANG M S, DENG Z L, CHE W X,et al. Combining statistical model and dictionary for domain adaption of Chinese word segmentation[J]. Journal of Chinese Information Processing, 2012, 26(2):8-12.) [9] 史庆伟, 从世源, 唐晓亮. LSI_LDA:一种混合特征降维方法[J]. 计算机应用研究, 2017, 34(8):2269-2273.(SHI Q W, CONG S Y, TANG X L. LSI_LDA:mixture method for feature dimensionality reduction[J]. Application Research of Computers, 2017, 34(8):2269-2273.) [10] AL SHAMSI F, AUNG Z. Automatic patent classification by a three-phase model with document frequency matrix and boosted tree[C]//Proceedings of the 2016 5th International Conference on Electronic Devices, Systems and Applications. Piscataway:IEEE, 2016:1-4. [11] IBRAHIM O A S, LANDA-SILVA D. Term frequency with average term occurrences for textual information retrieval[J]. Soft Computing, 2016, 20(8):3045-3061. [12] CHEN K, ZHANG Z, LONG J, et al. Turning from TF-IDF to TF-IGM for term weighting in text classification[J]. Expert Systems with Applications:an International Journal, 2016, 66(C):245-260. [13] 毛临川, 吴根秀, 吴恒, 等. 基于信息增益的最优组合因子Fisher判别法[J]. 计算机工程与应用, 2016, 52(19):94-96. (MAO L C, WU G X, WU H, et al. Optimal combination of factor Fisher discrimination method based on information gain[J]. Computer Engineering and Applications, 2016, 52(19):94-96.) [14] 李平, 戴月明, 王艳. 基于混合卡方统计量与逻辑回归的文本情感分析[J]. 计算机工程, 2017, 43(12):192-196. (LI P, DAI Y M, WANG Y. Text sentiment analysis based on hybrid chi-square statistic and logistics regression[J]. Computer Engineering, 2017, 43(12):192-196.) [15] 段宏湘, 张秋余, 张墨逸. 基于归一化互信息的FCBF特征选择算法[J]. 华中科技大学学报(自然科学版), 2017, 45(1):52-56.(DUAN H X, ZHANG Q Y, ZHANG M Y. FCBF algorithm based on normalized mutual information for feature selection[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(1):52-56.) [16] 张辉宜, 谢业名, 袁志祥, 等. 一种基于概率的卡方特征选择方法[J]. 计算机工程, 2016, 42(8):194-198.(ZHANG H Y, XIE Y M, YUAN Z X, et al. A method of CHI-square feature selection based on probability[J]. Computer Engineering, 2016, 42(8):194-198.) [17] 王晨曦, 林耀进, 刘景华, 等. 基于最近邻互信息的特征选择算法[J]. 计算机工程与应用, 2016, 52(18):74-78. (WANG C X, LIN Y J, LIU J H, et al. Feature selection algorithm based on nearest-neighbor mutual information[J]. Computer Engineering and Applications, 2016, 52(18):74-78.) [18] 吴金源, 冀俊忠, 赵学武, 等. 基于特征选择技术的情感词权重计算[J]. 北京工业大学学报, 2016, 42(1):142-151. (WU J Y, JI J Z, ZHAO X W, et al. Weight calculation of emotional word based on feature selection technique[J]. Journal of Beijing University of Technology, 2016, 42(1):142-151.) [19] YAO Y. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181(6):1080-1096. [20] 姚海英. 中文文本分类中卡方统计特征选择方法和TF-IDF权重计算方法的研究[D].长春:吉林大学, 2016. (YAO H Y. Research on chi-square statistic feature selection method and TF-IDF feature weighting method for chinese text classification[D]. Changchun:Jilin University, 2016.) [21] 李燕, 卫志华, 徐凯. 基于Lasso算法的中文情感混合特征选择方法研究[J]. 计算机科学, 2018, 45(1):39-46. (LI Y, WEI Z H, XU K. Hybrid feature selection method of chinese emotional characteristics based on Lasso algorithm[J]. Computer Science, 2018, 45(1):39-46.) [22] 张越兵,苗夺谦,张志飞.基于三支决策的多粒度文本情感分类模型[J].计算机科学, 2017, 44(12):188-193. (ZHANG Y B, MIAO D Q, ZHANG Z F. Multi-granularity text sentiment classification model based on three-way decisions[J]. Computer Science, 2017, 44(12):188-193.) |