1 |
CHOI E, KIM J. Deep learning based defect inspection using the intersection over minimum between search and abnormal regions[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21: 747-758.
|
2 |
HINTON G E, OSINDERO S, Y-W TEH. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
|
3 |
ZHANG H, WU C Q, GAO S, et al. An effective deep learning based scheme for network intrusion detection[C]// Proceedings of the 2018 24th International Conference on Pattern Recognition. Piscataway: IEEE, 2018: 682-687.
|
4 |
高忠石,苏旸,柳玉东.基于PCA-LSTM的入侵检测研究[J].计算机科学, 2019, 46(S2): 473-476.
|
|
GAO Z S, SU Y, LIU Y D. Study on intrusion detection based on PCA-LSTM [J]. Computer Science,2019, 46(S2): 473-476.
|
5 |
QAZI E U H, ALMORJAN A, ZIA T. A one-Dimensional Convolutional Neural Network (1D-CNN) based deep learning system for network intrusion detection[J]. Applied Sciences, 2022, 12(16): 7986.
|
6 |
马泽煊,李进,路艳丽,等.融合WaveNet和BiGRU的网络入侵检测方法[J].系统工程与电子技术,2022, 44(8): 2652-2660.
|
|
MA Z X, LI J, LU Y L, et al. Network intrusion detection method based on WaveNet and BiGRU[J].Systems Engineering and Electronics,2022, 44(8): 2652-2660.
|
7 |
SINHA J, MANOLLAS M. Efficient deep CNN-BiLSTM model for network intrusion detection[C]// Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition. New York: ACM, 2020: 223-231.
|
8 |
SAPRE S, ISLAM K, AHMADI P. A comprehensive data sampling analysis applied to the classification of rare IoT network intrusion types[C]// Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference. Piscataway: IEEE, 2021: 1-2.
|
9 |
MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]// Proceedings of the 2015 Military Communications and Information Systems Conference. Piscataway: IEEE, 2015: 1-6.
|
10 |
LeCUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
|
11 |
STERGIOU A, POPPE R, KALLIATAKIS G. Refining activation downsampling with SoftPool[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10337-10346.
|
12 |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. (2024-06-05) [2023-08-01]. .
|
13 |
LIU C, GU Z, WANG J. A hybrid intrusion detection system based on scalable K-means+ random forest and deep learning[J]. IEEE Access, 2021, 9: 75729-75740.
|
14 |
XIAO Y, XING C, ZHANG T, et al. An intrusion detection model based on feature reduction and convolutional neural networks[J]. IEEE Access, 2019, 7: 42210-42219.
|
15 |
KORONIOTIS N, MOUSTAFA N, SITNIKOVA E, et al. Towards developing network forensic mechanism for botnet activities in the IoT based on machine learning techniques[C]// Proceedings of the 9th International Conference on Mobile Networks and Management. Cham: Springer, 2018: 30-44.
|
16 |
MOUSTAFA N, CREECH G, SITNIKOVA E, et al. Collaborative anomaly detection framework for handling big data of cloud computing[C]// Proceedings of the 2017 Military Communications and Information Systems Conference. Piscataway: IEEE, 2017: 1-6.
|
17 |
RAVALE U, MARATHE N, PADIVA P. Feature selection based hybrid anomaly intrusion detection system using K-means and RBF kernel function[J]. Procedia Computer Science, 2015, 45: 428-435.
|
18 |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357.
|
19 |
HAN H, WANG W-Y, MAO B-H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]// Proceedings of the 2005 International Conference on Intelligent Computing. Cham: Springer, 2005: 878-887.
|
20 |
ZHANG H, HUANG L, WU C Q, et al. An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset[J]. Computer Networks, 2020, 177: 107315.
|
21 |
夏景明,李冲,谈玲,等.改进的随机森林分类器网络入侵检测方法[J].计算机工程与设计, 2019, 40(8): 2146-2150.
|
|
XIA J M, LI C, TAN L, et al. Improved random forest classifier network intrusion detection method [J].Computer Engineering and Design, 2019, 40(8): 2146-2150.
|
22 |
HOOSHMAND M K, HUCHAIAH M D. Network intrusion detection with 1D convolutional neural networks[J]. Digital Technologies Research and Applications, 2022, 1(2): 25-34.
|
23 |
LIN Y, WANG J, TU Y, et al. Time-related network intrusion detection model: a deep learning method[C]// Proceedings of the 2019 IEEE Global Communications Conference. Piscataway: IEEE, 2019: 1-6.
|