[1] SOLTANPOUR S,BOUFAMA B,WU Q M J. A survey of local feature methods for 3D face recognition[J]. Pattern Recognition, 2017,72:391-406. [2] DRIRA H,BEN AMOR B,SRIVASTAVA A,et al. 3D face recognition under expressions,occlusions,and pose variations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(9):2270-2283. [3] LEI Y,BENNAMOUN M,HAYAT M,et al. An efficient 3D face recognition approach using local geometrical signatures[J]. Pattern Recognition,2014,47(2):509-524. [4] XU C,LI S,TAN T,et al. Automatic 3D face recognition from depth and intensity Gabor features[J]. Pattern Recognition,2009, 42(9):1895-1905. [5] SUN Y,WANG X,TANG X. Hybrid deep learning for face verification[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE,2013:1489-1496. [6] KIM D, HERNANDEZ M, CHOI J, et al. Deep 3D face identification[C]//Proceedings of the 2017 IEEE International Joint Conference on Biometrics. Piscataway:IEEE,2017:133-142. [7] LIU F,ZHAO Q,LIU X,et al. Joint face alignment and 3D face reconstruction with application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020, 42(3):664-678. [8] GILANI S Z,MIAN A. Learning from millions of 3D scans for largescale 3D face recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1896-1905. [9] MU G,HUANG D,HU G,et al. Led3D:a lightweight and efficient deep approach to recognizing low-quality 3D faces[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:5766-5775. [10] QI C R,SU H,MO K,et al. PointNet:deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:652-660. [11] QI C R,YI L,SU H,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:5099-5108. [12] LI Y,BU R,SUN M,et al. PointCNN:convolution on xtransformed points[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2018:820-830. [13] CAI G,JIANG Z,WANG Z,et al. Spatial aggregation net:point cloud semantic segmentation based on multi-directional convolution[J]. Sensors,2019,19(19):No. 4329. [14] JIANG M,WU Y,ZHAO T,et al. PointSIFT:a SIFT-like network module for 3D point cloud semantic segmentation[EB/OL].[2020-01-10]. https://arxiv.org/pdf/1807.00652.pdf. [15] XU C,WANG Y,TAN T,et al. A robust method for detecting nose on 3D point cloud[J]. Pattern Recognition Letters,2006,27(13):1487-1497. [16] Biometrics Ideal Test. CASIA-3D FaceV1[EB/OL].[2020-01-10]. http://biometrics.idealtest.org/dbDetailForUser.do?id=8. [17] MIAN A,BENNAMOUN M,OWENS R. Automatic 3D face detection,normalization and recognition[C]//Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission. Piscataway:IEEE, 2006:735-742. [18] ELDAR Y,LINDENBAUM M,PORAT M,et al. The farthest point strategy for progressive image sampling[J]. IEEE Transactions on Image Processing,1997,6(9):1305-1315. [19] 吴从中, 王浩宇, 詹曙. 融合曲面形状和纹理特征的三维人脸识别[J]. 电子测量与仪器学报,2018,32(9):150-156.(WU C Z,WANG H Y,ZHAN S. 3D face recognition by fusing surface shape and texture features[J]. Journal of Electronic Measurement and Instrumentation,2018,32(9):150-156.) |